Previous |  Up |  Next

Article

Keywords:
Li-Yorke chaos; Hausdorff dimension
Summary:
We show that for some simple classical chaotic dynamical systems the set of Li-Yorke pairs has full Hausdorff dimension on invariant sets.
References:
[1] Blanchard, F., Glasner, E., Kolyada, S., Maass, A.: On Li-Yorke pairs. J. Reine Angew. Math. 547 51-68 (2002). MR 1900136 | Zbl 1059.37006
[2] Blanchard, F., Huang, W., Snoah, L.: Topological size of scrambled sets. Colloquium Mathematicum 110 293-361 (2008). DOI 10.4064/cm110-2-3 | MR 2353910
[3] Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, New York (1990). MR 1102677 | Zbl 0689.28003
[4] Hutchinson, J. E.: Fractals and self-similarity. Indiana Univ. Math. J. 30 271-280 (1981). DOI 10.1512/iumj.1981.30.30055 | MR 0625600 | Zbl 0598.28011
[5] Katok, A., Hasselblatt, B.: Introduction to Modern Theory of Dynamical Systems. Cambridge University Press (1995). MR 1326374
[6] Li, T.-Y., Yorke, J. A.: Period three implies chaos. Amer. Math. Monthly 82 985-992 (1975). DOI 10.2307/2318254 | MR 0385028 | Zbl 0351.92021
[7] Marstrand, J. M.: The dimension of Cartesian product sets. Proc. Camb. Philos. Soc. 50 198-202 (1954). DOI 10.1017/S0305004100029236 | MR 0060571 | Zbl 0055.05102
[8] Moran, P.: Additive functions of intervals and Hausdorff measure. Proc. Cambridge Philos. Soc. 42 15-23 (1946). MR 0014397 | Zbl 0063.04088
[9] Neunhäuserer, J.: Dimension theoretical properties of generalized Baker's transformations. Nonlinearity 15 1299-1307 (2002). DOI 10.1088/0951-7715/15/4/315 | MR 1912296 | Zbl 1148.37300
[10] Neunhäuserer, J.: Dimension Theory for Linear Solenoids. Fractals 15 63-72 (2007). DOI 10.1142/S0218348X07003423 | MR 2281945
[11] Pesin, Ya.: Dimension Theory in Dynamical Systems---Contemplary Views and Applications. University of Chicago Press (1997). MR 1489237
[12] Smale, S.: Differentiable dynamical systems. Bull. Amer. Math. Soc. 73 747-817 (1967). DOI 10.1090/S0002-9904-1967-11798-1 | MR 0228014 | Zbl 0202.55202
[13] Young, L.-S.: Dimension, entropy and Lyapunov exponents. Ergodic Theory Dyn. Syst. 2 109-124 (1982). MR 0684248 | Zbl 0523.58024
Partner of
EuDML logo