[1] Ahlbrandt, C. D.:
Principal and antiprincipal solutions of self-adjoint differential systems and their reciprocals. Rocky Mountain J. Math. 2 (1972), 169-182.
DOI 10.1216/RMJ-1972-2-2-169 |
MR 0296388
[2] Baxley, J. V.:
The Friedrichs extension of certain singular differential operators. Duke Math. J. 35 (1968), 455-462.
MR 0226446 |
Zbl 0174.45701
[4] Došlý, O.:
Principal and nonprincipal solutions of symplectic dynamic systems on time scales. Electron. J. Qual. Theory Differ. Equ. 2000, Suppl. No. 5, 14 p., electronic only.
MR 1798655
[5] Došlý, O., Hasil, P.:
Friedrichs extension of operators defined by symmetric banded matrices. Linear Algebra Appl. 430 (2009), 1966-1975.
MR 2503945 |
Zbl 1171.39004
[6] Freudenthal, H.:
Über die Friedrichssche Fortsetzung halbbeschränkter Hermitescher Operatoren. {German} Proc. Akad. Wet. Amsterdam 39 (1936), 832-833.
Zbl 0015.25904
[8] Friedrichs, K.:
Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren, zweiter Teil. German Math. Ann. 109 (1934), 685-713.
DOI 10.1007/BF01449164 |
MR 1512919
[9] Friedrichs, K.:
Über die ausgezeichnete Randbedingung in der Spektraltheorie der halbbeschränkten gewöhnlichen Differentialoperatoren zweiter Ordnung. German Math. Ann. 112 (1936), 1-23.
DOI 10.1007/BF01565401 |
MR 1513033
[11] Kratz, W.:
Quadratic Functionals in Variational Analysis and Control Theory. Akademie Verlag, Berlin (1995).
MR 1334092 |
Zbl 0842.49001
[14] Niessen, H. D., Zettl, A.:
The Friedrichs extension of regular ordinary differential operators. Proc. Roy. Soc. Edinburgh Sect. A 114 (1990), 229-236.
MR 1055546 |
Zbl 0712.34020
[15] Niessen, H. D., Zettl, A.:
Singular Sturm-Liouville problems: the Friedrichs extension and comparison of eigenvalues. Proc. London Math. Soc. 64 (1992), 545-578.
MR 1152997 |
Zbl 0768.34015
[20] Zettl, A.:
On the Friedrichs extension of singular differential operators. Commun. Appl. Anal. 2 (1998), 31-36.
MR 1612893 |
Zbl 0895.34018
[21] Zettl, A.:
Sturm-Liouville Theory. Mathematical Surveys and Monographs, Vol. 121, American Mathematical Society, Providence, RI (2005).
MR 2170950 |
Zbl 1103.34001