Previous |  Up |  Next

Article

Keywords:
linear Hamiltonian system; Friedrichs extension; self-adjoint operator; recessive solution; quadratic functional; positivity conjoined basis
Summary:
In this paper we consider a linear operator on an unbounded interval associated with a matrix linear Hamiltonian system. We characterize its Friedrichs extension in terms of the recessive system of solutions at infinity. This generalizes a similar result obtained by Marletta and Zettl for linear operators defined by even order Sturm-Liouville differential equations.
References:
[1] Ahlbrandt, C. D.: Principal and antiprincipal solutions of self-adjoint differential systems and their reciprocals. Rocky Mountain J. Math. 2 (1972), 169-182. DOI 10.1216/RMJ-1972-2-2-169 | MR 0296388
[2] Baxley, J. V.: The Friedrichs extension of certain singular differential operators. Duke Math. J. 35 (1968), 455-462. MR 0226446 | Zbl 0174.45701
[3] Brown, B. M., Christiansen, J. S.: On the Krein and Friedrichs extensions of a positive Jacobi operator. Expo. Math. 23 (2005), 179-186. DOI 10.1016/j.exmath.2005.01.020 | MR 2155010 | Zbl 1078.39019
[4] Došlý, O.: Principal and nonprincipal solutions of symplectic dynamic systems on time scales. Electron. J. Qual. Theory Differ. Equ. 2000, Suppl. No. 5, 14 p., electronic only. MR 1798655
[5] Došlý, O., Hasil, P.: Friedrichs extension of operators defined by symmetric banded matrices. Linear Algebra Appl. 430 (2009), 1966-1975. MR 2503945 | Zbl 1171.39004
[6] Freudenthal, H.: Über die Friedrichssche Fortsetzung halbbeschränkter Hermitescher Operatoren. {German} Proc. Akad. Wet. Amsterdam 39 (1936), 832-833. Zbl 0015.25904
[7] Friedrichs, K.: Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren. German Math. Ann. 109 (1934), 465-487. DOI 10.1007/BF01449150 | MR 1512905 | Zbl 0009.07205
[8] Friedrichs, K.: Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren, zweiter Teil. German Math. Ann. 109 (1934), 685-713. DOI 10.1007/BF01449164 | MR 1512919
[9] Friedrichs, K.: Über die ausgezeichnete Randbedingung in der Spektraltheorie der halbbeschränkten gewöhnlichen Differentialoperatoren zweiter Ordnung. German Math. Ann. 112 (1936), 1-23. DOI 10.1007/BF01565401 | MR 1513033
[10] Kalf, H.: A characterization of the Friedrichs extension of Sturm-Liouville operators. J. London Math. Soc. 17 (1978), 511-521. DOI 10.1112/jlms/s2-17.3.511 | MR 0492493 | Zbl 0406.34029
[11] Kratz, W.: Quadratic Functionals in Variational Analysis and Control Theory. Akademie Verlag, Berlin (1995). MR 1334092 | Zbl 0842.49001
[12] Marletta, M., Zettl, A.: The Friedrichs extension of singular differential operators. J. Differential Equations 160 (2000), 404-421. DOI 10.1006/jdeq.1999.3685 | MR 1736997 | Zbl 0954.47012
[13] Möller, M., Zettl, A.: Symmetric differential operators and their Friedrichs extension. J. Differential Equations 115 (1995), 50-69. DOI 10.1006/jdeq.1995.1003 | MR 1308604
[14] Niessen, H. D., Zettl, A.: The Friedrichs extension of regular ordinary differential operators. Proc. Roy. Soc. Edinburgh Sect. A 114 (1990), 229-236. MR 1055546 | Zbl 0712.34020
[15] Niessen, H. D., Zettl, A.: Singular Sturm-Liouville problems: the Friedrichs extension and comparison of eigenvalues. Proc. London Math. Soc. 64 (1992), 545-578. MR 1152997 | Zbl 0768.34015
[16] Reid, W. T.: Ordinary Differential Equations. Wiley, New York (1971). MR 0273082 | Zbl 0212.10901
[17] Rellich, F.: Halbbeschränkte gewöhnliche Differentialoperatoren zweiter Ordnung. German Math. Ann. 122 (1951), 343-368. DOI 10.1007/BF01342848 | MR 0043316 | Zbl 0044.31201
[18] Rosenberger, R.: A new characterization of the Friedrichs extension of semibounded Sturm-Liouville operators. J. London Math. Soc. 31 (1985), 501-510. DOI 10.1112/jlms/s2-31.3.501 | MR 0812779 | Zbl 0615.34019
[19] Wang, A., Sun, J., Zettl, A.: Characterization of domains of self-adjoint ordinary differential operators. J. Differential Equations 246 (2009), 1600-1622. DOI 10.1016/j.jde.2008.11.001 | MR 2488698 | Zbl 1169.47033
[20] Zettl, A.: On the Friedrichs extension of singular differential operators. Commun. Appl. Anal. 2 (1998), 31-36. MR 1612893 | Zbl 0895.34018
[21] Zettl, A.: Sturm-Liouville Theory. Mathematical Surveys and Monographs, Vol. 121, American Mathematical Society, Providence, RI (2005). MR 2170950 | Zbl 1103.34001
[22] Zheng, Z., Chen, S.: GKN theory for linear Hamiltonian systems. Appl. Math. Comput. 182 (2006), 1514-1527. DOI 10.1016/j.amc.2006.05.041 | MR 2282593 | Zbl 1118.47038
[23] Zheng, Z., Qi, J., Chen, S.: Eigenvalues below the lower bound of minimal operators of singular Hamiltonian expressions. Comput. Math. Appl. 56 (2008), 2825-2833. DOI 10.1016/j.camwa.2008.05.043 | MR 2467672 | Zbl 1165.34425
Partner of
EuDML logo