Previous |  Up |  Next

Article

Keywords:
quasilinear functional; minimizer; regularity; Campanato-Morrey space
Summary:
We discuss the interior Hölder everywhere regularity for minimizers of quasilinear functionals of the type $$ \mathcal A(u;\Omega )=\int _{\Omega } A_{ij}^{\alpha \beta }(x,u) D_{\alpha }u^iD_{\beta }u^j\,{\rm d}x $$ whose gradients belong to the Morrey space $L^{2,n-2}(\Omega ,\mathbb R^{nN})$.
References:
[1] Campanato, S.: Sistemi ellittici in forma divergenza. Regolarita all'interno. Quaderni Scuola Norm. Sup. Pisa, Pisa (1980). MR 0668196 | Zbl 0453.35026
[2] Daněček, J., Viszus, E.: $C^{0,\gamma}$-regularity for vector-valued minimizers of quasilinear functionals. Nonlinear Differ. Equ. Appl. 16 (2009), 189-211. DOI 10.1007/s00030-008-7070-8 | MR 2497329
[3] Daněček, J., John, O., Stará, J.: Remarks on $C^{1,\gamma}$-regularity of weak solutions to elliptic systems with BMO gradients. Z. Anal. Anw. 28 (2009), 57-65. DOI 10.4171/ZAA/1372 | MR 2469716
[4] Giorgi, E. De: Sulla diferenziabilita e l'analiticita delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino, Cl. Sci. Fis. Mat. Nat. 125 (1957), 25-43.
[5] Gironimo, P. Di, Esposito, L., Sgambati, L.: A remark on $L^{2,\lambda}$-regularity for minimizers of quasilinear functionals. Manuscripta Math. 113 (2004), 143-151. DOI 10.1007/s00229-003-0429-6 | MR 2128543
[6] Giaquinta, M.: Multiple integrals in the calculus of variations and nonlinear elliptic systems. Annals of Mathematics Studies N. 105, Princenton University Press, Princeton, 1983. MR 0717034 | Zbl 0516.49003
[7] Giaquinta, M., Giusti, E.: On the regularity of the minima of variational integrals. Acta Math. 148 (1982), 31-46. DOI 10.1007/BF02392725 | MR 0666107 | Zbl 0494.49031
[8] Giaquinta, M., Giusti, E.: Differentiability of minima of non-differentiable functionals. Invent. Math. 72 (1983), 285-298. DOI 10.1007/BF01389324 | MR 0700772 | Zbl 0513.49003
[9] Giusti, E.: Metodi diretti nel calcolo delle variazioni. Unione Matematica Italiana, Officine Grafiche Tecnoprint, Bologna, 1994. MR 1707291 | Zbl 0942.49002
[10] Giusti, E., Miranda, M.: Un esempio di soluzioni discontinue per un problema di minimo relativo ad un integrale di calcolo delle ellitico. Boll. Unione Mat. Ital. 12 (1968), 219-226. MR 0232265
[11] Kufner, A., John, O., Fučík, S.: Function Spaces. Academia, Praha (1977). MR 0482102
[12] Nečas, J., Stará, J.: Principio di massimo per i sistemi ellitici quasilineari non diagonali. Boll. Unione Mat. Ital. 6 (1972), 1-10. MR 0315281
[13] Sarason, D.: Functions of vanishing mean oscillation. Trans. Amer. Math. Soc. 207 (1975), 391-405. DOI 10.1090/S0002-9947-1975-0377518-3 | MR 0377518 | Zbl 0319.42006
[14] Šverák, V., Yan, X.: Non-Lipschitz minimizers of smooth uniformly convex functionals. Proc. Nat. Acad. Sci. USA. 99 (2002), 15269-15276. DOI 10.1073/pnas.222494699 | MR 1946762 | Zbl 1106.49046
[15] Ziemer, W. P.: Weakly Differentiable Functions. Springer, Heidelberg (1989). MR 1014685 | Zbl 0692.46022
Partner of
EuDML logo