[1] Brualdi, R. A., Solheid, E. S.:
On the spectral radius of connected graphs. Publ. Inst. Math. Beograd 39(53) (1986), 45-54.
MR 0869175 |
Zbl 0603.05028
[2] Cardoso, D. M., Cvetković, D., Rowlinson, P., Simić, S. K.:
A sharp lower bound for the least eigenvalue of the signless Laplacian of a non-bipartite graph. Linear Algebra Appl. 429 (2008), 2770-2780.
MR 2455532
[3] Cvetković, D. M., Doob, M., Sachs, H.: Spectra of Graphs. Theory and Applications. VEB Deutscher Verlag der Wissenschaften Berlin (1980).
[4] Cvetković, D. M., Rowlinson, P., Simić, S.:
Eigenspaces of Graphs. Cambridge University Press Cambridge (1997), 56-60.
MR 1440854
[6] Geng, X. Y., Li, S. C.:
The spectral radius of tricyclic graphs with $n$ vertices and $k$ pendant vertices. Linear Algebra Appl. 428 (2008), 2639-2653.
MR 2416577
[7] Grossman, J. W., Kulkarni, D. M., Schochetman, I. E.:
Algebraic graph theory without orientation. Linear Algebra Appl. 212-213 (1994), 289-307.
MR 1306983 |
Zbl 0817.05047
[8] Guo, J. M.:
The effect on the Laplacian spectral radius of a graph by adding or grafting edges. Linear Algebra Appl. 413 (2006), 59-71.
MR 2202092 |
Zbl 1082.05059
[9] Guo, S. G.:
The spectral radius of unicyclic and bicyclic graphs with $n$ vertices and $k$ pendant vertices. Linear Algebra Appl. 408 (2005), 78-85.
MR 2166856 |
Zbl 1073.05550
[10] Heuvel, J. van den:
Hamilton cycles and eigenvalues of graphs. Linear Algebra Appl. 226-228 (1995), 723-730.
MR 1344594
[11] Li, J. S., Zhang, X.-D.:
On the Laplacian eigenvalues of a graph. Linear Algebra Appl. 285 (1998), 305-307.
MR 1653547 |
Zbl 0931.05052
[12] Li, Q., Feng, K.:
On the largest eigenvalue of a graph. Acta. Math. Appl. Sinica 2 (1979), 167-175 Chinese.
MR 0549045
[13] Liu, B. L.: Combinatorial Matrix Theory. Science Press Beijing (2005), Chinese.
[14] Merris, R.:
Laplacian matrices of graphs: A survey. Linear Algebra Appl. 197-198 (1994), 143-176.
MR 1275613 |
Zbl 0802.05053
[15] Pan, Y. L.:
Sharp upper bounds for the Laplacian graph eigenvalues. Linear Algebra Appl. 355 (2002), 287-295.
MR 1930150 |
Zbl 1015.05055
[16] Rojo, O., Soto, R., Rojo, H.:
An always nontrivial upper bound for Laplacian graph eigenvalues. Linear Algebra Appl. 312 (2000), 155-159.
MR 1759329 |
Zbl 0958.05088
[17] Wu, B., Xiao, E., Hong, Y.:
The spectral radius of trees on $k$ pendant vertices. Linear Algebra Appl. 395 (2005), 343-349.
MR 2112895 |
Zbl 1057.05057