Previous |  Up |  Next

Article

Keywords:
positive linear operator; Bernstein-type operator; genuine Bernstein-Durrmeyer operator; simultaneous approximation; degree of approximation; moduli of continuity
Summary:
We introduce and study a one-parameter class of positive linear operators constituting a link between the well-known operators of S. N. Bernstein and their genuine Bernstein-Durrmeyer variants. Several limiting cases are considered including one relating our operators to mappings investigated earlier by Mache and Zhou. A recursion formula for the moments is proved and estimates for simultaneous approximation of derivatives are given.
References:
[1] Berens, H., Xu, Y.: On Bernstein-Durrmeyer polynomials with Jacobi weights. In: Approximation Theory and Functional Analysis Academic Press Boston (1991), 25-46. MR 1090548 | Zbl 0715.41013
[2] Chen, W.: On the modified Bernstein-Durrmeyer operator. Report of the Fifth Chinese Conference on Approximation Theory, Zhen Zhou, China (1987).
[3] Derriennic, M. M.: Sur l'approximation de fonctions intégrables sur $[0,1]$ par des polynômes de Bernstein modifiés. J. Approx. Theory 31 (1981), 325-343 French. DOI 10.1016/0021-9045(81)90101-5 | MR 0628516
[4] Durrmeyer, J. L.: Une formule d'inversion de la transformée de Laplace: Applications à la théorie des moments. Thèse de 3ème cycle. Faculté des Sciences Univ. Paris (1967).
[5] Gavrea, I.: The approximation of the continuous functions by means of some positive operators. Result. Math. 30 (1996), 55-66. DOI 10.1007/BF03322180 | MR 1402425
[6] Gonska, H.: Quantitative Korovkin-type theorems on simultaneous approximation. Math. Z. 186 (1984), 419-433. DOI 10.1007/BF01174895 | MR 0744832 | Zbl 0523.41013
[7] Gonska, H. H., Kacsó, D., Raşa, I.: On genuine Bernstein-Durrmeyer operators. Result. Math. 50 (2007), 213-225. DOI 10.1007/s00025-007-0242-8 | MR 2343589
[8] Goodman, T. N. T., Sharma, A.: A modified Bernstein-Schoenberg operator. Proc. Conf. Constructive Theory of Functions, Varna 1987 Bl. Sendov et al. Publ. House Bulg. Acad. Sci. Sofia (1988), 166-173. MR 0994834 | Zbl 0737.41023
[9] Kacsó, D.: Certain Bernstein-Durrmeyer type operators preserving linear functions. Habilitationschrift Universität Duisburg-Essen (2006).
[10] Lupaş, A.: Die Folge der Betaoperatoren. Dissertation Universität Stuttgart (1972).
[11] Mache, D. H., Zhou, D. X.: Characterization theorems for the approximation by a family of operators. J. Approx. Theory 84 (1996), 145-161. DOI 10.1006/jath.1996.0012 | MR 1370596 | Zbl 0840.41017
[12] Mond, B.: On the degree of approximation by linear positive operators. J. Approx. Theory 18 (1976), 304-306. DOI 10.1016/0021-9045(76)90022-8 | MR 0422965 | Zbl 0339.41009
[13] Parvanov, P. E., Popov, B. D.: The limit case of Bernstein's operators with Jacobi weights. Math. Balk. (N.S.) 8 (1994), 165-177. MR 1338774 | Zbl 0900.41006
[14] Pǎltǎnea, R.: Sur un operateur polynômial défini sur l'ensemble des fonctions intégrables. Babeş Bolyai Univ., Fac. Math., Res. Semin. 2 (1983), 101-106 French. MR 0750503
[15] Pǎltǎnea, R.: Une propriété d'extrémalité des valeurs propres des opérateurs polynômiaux de Durrmeyer généralisés. Math., Rev. Anal. Numér. Théor. Approximation, Anal. Numér. Théor. Approximation 15 (1986), 57-64 French. MR 0870679
[16] Pǎltǎnea, R.: Approximation Theory Using Positive Linear Operators. Birkhäuser Boston (2004). MR 2085239
[17] Pǎltǎnea, R.: A class of Durrmeyer type operators preserving linear functions. Annals of the Tiberiu Popoviciu Seminar on Functional Equations, Approximation and Convexity (Cluj-Napoca), vol. 5 (2007), 109-118.
[18] Sauer, T.: The genuine Bernstein-Durrmeyer operator on a simplex. Result. Math. 26 (1994), 99-130. DOI 10.1007/BF03322291 | MR 1290684
[19] Waldron, S.: A generalised beta integral and the limit of the Bernstein-Durrmeyer operator with Jacobi weights. J. Approx. Theory 122 (2003), 141-150. DOI 10.1016/S0021-9045(03)00041-8 | MR 1976131 | Zbl 1024.41014
Partner of
EuDML logo