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Abstract. We introduce and study a one-parameter class of positive linear operators
constituting a link between the well-known operators of S.N. Bernstein and their genuine
Bernstein-Durrmeyer variants. Several limiting cases are considered including one relating
our operators to mappings investigated earlier by Mache and Zhou. A recursion formula
for the moments is proved and estimates for simultaneous approximation of derivatives are
given.
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1. Introduction

Denote by LB[0, 1] the space of bounded Lebesgue integrable functions on [0, 1]

and by Πn the space of polynomials of degree at most n ∈ N. The operators Un :

LB[0, 1] → Πn, n > 1, given by

Un(f, x) = (n − 1)

n−1
∑

k=1

(
∫ 1

0

f(t)pn−2,k−1(t) dt

)

· pn,k(x)

+ (1 − x)nf(0) + xnf(1), f ∈ LB[0, 1],

(1.1)

pn,k(x) =

(

n

k

)

xk(1 − x)n−k, 0 6 k 6 n, k, n ∈ N, x ∈ [0, 1],(1.2)

were introduced simultaneously by Chen [2] and Goodman and Sharma [8] and stud-

ied, also in multidimensional settings, among others by Parvanov and Popov [13],
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Sauer [18], Gavrea [5], Păltănea [16], Waldron [19], Gonska, Kacsó and Raşa [7]. The

operators Un are limits of the Bernstein-Durrmeyer operators with Jacobi weights,

Ma,b
n , a, b > −1, namely Un(f) = lim

a→−1
b→−1

Ma,b
n (f), f ∈ C[0, 1], n ∈ N, where

(1.3) Ma,b
n (f, x) =

n
∑

k=0

∫ 1

0 f(t)ta(1 − t)bpn,k(t) dt
∫ 1

0
ta(1 − t)bpn,k(t) dt

· pn,k(x).

For a = 0 and b = 0, the operators Ma,b
n reduce to the operators introduced

independently by Durrmeyer [4] and Lupaş [10] and intensively studied also by Dier-

rennic [3]. The operators Ma,b
n , studied by Păltănea [14], [15], Berens and Xu [1]

and others have attractive properties of approximation, very similar to those of the

Durrmeyer-Lupaş operators, including the characteristic property of representation

as modified partial Fourier sums. However, for positive linear operators this property

is incompatible with that of preserving linear functions. In contrast to the opera-

tors Ma,b
n , the limiting mappings Un preserve linear functions. For this reason and

for several other remarkable properties, some authors name the operators Un the

“genuine” Bernstein-Durrmeyer operators.

It is clear from the definition of Un that they are closely related to the classical

Bernstein operators given by

(1.4) Bn(f, x) =

n
∑

k=0

f
(k

n

)

· pn,k(x), f ∈ C[0, 1].

It is well known that these are also positive linear operators which reproduce linear

functions, and there are thousands of articles and books dealing with their properties

from various points of view.

To the authors’ knowledge only trivial methods seem to be known bridging the

gap between Un and Bn, and such that important characteristics of the two like the

reproduction of linear function, positivity, etc. are retained. One of these trivial

methods is that of taking convex combinations (1 − α)Un + αBn, 0 6 α 6 1.

In the present paper we introduce and investigate a one parameter class of

Bernstein-Durrmeyer-type operators U̺
n, 0 < ̺ < ∞, which constitute a non-trivial

link between Un (̺ = 1) and Bn (̺ → ∞). The U̺
n, 0 < ̺ < ∞, turn out to be the

weak limits of certain operators studied earlier by Mache and Zhou [11]. As in their

article, Euler’s Beta function plays a fundamental role in our construction.

Our further investigation focusses on the moments and their recursion formula, the

images of the monomial (Section 3) and in particular on the degree of simultaneous

approximation (Section 5).
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2. Definition and limiting cases

The following definition was first given in [17].

Definition 2.1. Let ̺ > 0 and n ∈ N. Define an operator U̺
n : LB[0, 1] → Πn

for f ∈ LB[0, 1] and x ∈ [0, 1] by

U̺
n(f, x) :=

n
∑

k=0

F ̺
n,k(f) · pn,k(x)(2.1)

:=
n−1
∑

k=1

(
∫ 1

0

f(t)µ̺
n,k(t) dt

)

· pn,k(x) + f(0)(1 − x)n + f(1)xn.

Here, for 1 6 k 6 n − 1,

(2.2) µ̺
n,k(t) :=

tk̺−1(1 − t)(n−k)̺−1

B(k̺, (n − k)̺)
,

and

(2.3) B(x, y) =

∫ 1

0

tx−1(1 − t)y−1 dt, x, y > 0,

is Euler’s Beta function.

In what follows we write ej(t) = tj , t ∈ [0, 1], for j > 0.

Remark 2.2. Basic properties of the positive functionals F ̺
n,k : LB[0, 1] → R,

̺ > 0, are the following:

(2.4) F ̺
n,k(e0) = 1, F ̺

n,k(e1) =
k

n
, 0 6 k 6 n.

This implies

(2.5) U̺
n(e0) = e0, U̺

n(e1) = e1,

i.e., the operators U̺
n preserve linear functions.

It is easily seen that, for ̺ = 1, we obtain U1
n = Un. On the other hand, we have

the following interesting limiting behavior.
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Theorem 2.3. For any f ∈ C[0, 1] we have

(2.6) lim
̺→∞

U̺
n(f) = Bn(f), uniformly.

P r o o f. Let f ∈ C[0, 1] and let n ∈ N be fixed. It is sufficient to show that for

fixed k and n with 1 6 k 6 n − 1 one has

lim
̺→∞

F ̺
n,k(f) = f

(k

n

)

.

But this is a consequence of Korovkin’s famous theorem, applied to the situation

F ̺
n,k : C[0, 1] → C

[k

n
,
k

n

]

.

Indeed, first we have relations (2.4). Moreover, using the representation of the

Beta function in terms of the Gamma function, it is easy to see that for ̺ > 0 one

has

(2.7) F ̺
n,k(e2) =

k

n
· k + 1/̺

n + 1/̺
→ k2

n2
for ̺ → ∞.

Hence for all f ∈ C[0, 1]

(2.8) F ̺
n,k(f) → f

(k

n

)

for ̺ → ∞.

�

Next we show that the operators U̺
n are the limit case of the operators studied

by Mache and Zhou [11], which we denote by P ̺,a,b
n . These operators are given, for

n ∈ N, ̺ > 0, a > −1, b > −1, by

P ̺,a,b
n (f, x) =

n
∑

k=0

T ̺,a,b
n,k (f) · pn,k(x),

T ̺,a,b
n,k (f) =

∫ 1

0
tk̺+a(1 − t)(n−k)̺+bf(t) dt

B(k̺ + a + 1, (n − k)̺ + b + 1)
,

where f ∈ C[0, 1], x ∈ [0, 1].
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Theorem 2.4. For any f ∈ C[0, 1] and ̺ > 0 we have

(2.9) lim
a→−1
b→−1

P ̺,a,b
n (f) = U̺

n(f), uniformly.

P r o o f. Fix f , ̺ and n. We have to prove

(2.10) lim
a→−1
b→−1

T ̺,a,b
n,k (f) = F ̺

n,k(f) for 0 6 k 6 n.

For 1 6 k 6 n−1 this limit is immediate. For k = 0 let us denote R = T ̺,a,b
n,0 (f)−f(0).

We have

R =

∫ 1

0

(f(t) − f(0))ta(1 − t)n̺+b

B(a + 1, n̺ + b + 1)
dt.

Let ε > 0 be arbitrarily given. There exists 0 < δ < 1 such that |f(t) − f(0)| < 1
2ε

for any t ∈ [0, δ]. Then

∣

∣

∣

∣

∫ δ

0

(f(t) − f(0))ta(1 − t)n̺+b

B(a + 1, n̺ + b + 1)
dt

∣

∣

∣

∣

<
1

2
ε, a, b > −1.

Also

∣

∣

∣

∣

∫ 1

δ

(f(t) − f(0))ta(1 − t)n̺+b

B(a + 1, n̺ + b + 1)
dt

∣

∣

∣

∣

6 2‖f‖
∫ 1

δ

ta(1 − t)n̺+b

B(a + 1, n̺ + b + 1)
dt.

Let a ∈ (−1, 0), b ∈ (−1, 0). First, we have

∫ 1

δ

ta(1 − t)n̺+b dt 6 δa

∫ 1

δ

(1 − t)n̺+b dt 6 δ−1B(1, n̺).

On the other hand, we have

B(a + 1, n̺ + b + 1) >

∫ 1

0

ta(1 − t)n̺ dt >

∫ 1/2

0

ta(1 − t)n̺ dt

>

(1

2

)n̺
∫ 1/2

0

ta dt = (a + 1)−1
(1

2

)n̺+a+1

> (a + 1)−1
(1

2

)n̺+1

.

It follows that if |a + 1| is sufficiently small, then

2‖f‖
∫ 1

δ

ta(1 − t)n̺+b

B(a + 1, n̺ + b + 1)
dt <

1

2
ε

and hence |R| < ε. For k = n the proof is similar, using a symmetric argument. �
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3. Moments and their recursion

Below we will repeatedly use the function Ψ(t) = t(1 − t), t ∈ [0, 1].

Theorem 3.1. For x, y ∈ [0, 1] we have

(3.1) U̺
n(e0, x) = 1, U̺

n(e1 − ye0, x) = x − y,

and for r > 1

U̺
n((e1 − ye0)

r+1, x)

=
̺Ψ(x)

n̺ + r
· (U̺

n((e1 − ye0)
r, x))′x +

(1 − 2y)r + n̺(x − y)

n̺ + r
· U̺

n((e1 − ye0)
r, x)

+
rΨ(y)

n̺ + r
· U̺

n((e1 − ye0)
r−1, x).

P r o o f. The first two relations are immediate, see Remark 2.2. Let now n > 2

and fix 1 6 k 6 n − 1 and r > 1. Let x ∈ [0, 1]. We have

(k − nx)F ̺
n,k((e1 − y)r)

=

∫ 1

0

(k − nt)(t − y)rµ̺
n,k(t) dt + nF ̺

n,k((e1 − y)r+1) + n(y − x)F ̺
n,k((e1 − y)r).

The following relation is immediate:

(µ̺
n,k(t)Ψ(t))′t = ̺(k − nt)µ̺

n,k(t), 1 6 k 6 n − 1.

Consequentely, integrating by parts we obtain

∫ 1

0

(k − nt)(t − y)rµ̺
n,k(t) dt =

1

̺

∫ 1

0

(µ̺
n,k(t)Ψ(t))′t(t − y)r dt

= − r

̺

∫ 1

0

µ̺
n,k(t)Ψ(t)(t − y)r−1 dt.

Using the identity t(1 − t) = −(t − y)2 + (1 − 2y)(t − y) + y(1 − y), we arrive at

(k − nx)F ̺
n,k((e1 − y)r)

=
n̺ + r

̺
· F ̺

n,k((e1 − y)r+1) +
r(2y − 1) + (y − x)n̺

̺
· F ̺

n,k((e1 − y)r)

− rΨ(y)

̺
· F ̺

n,k((e1 − y)r−1).
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It is immediately seen that this relation holds also for k = 0 and k = n. We multiply

each of these relations by pn,k(x), add them and by taking into account the relation

Ψ(x)(U̺
n(g, x))′x =

n
∑

k=0

pn,k(x)(k − nx)F ̺
n,k(g), g ∈ C[0, 1],

we arrive at the claim of the theorem. �

For brevity we will write in the sequel Mn,r(x) := M̺
n,r(x) := U̺

n((e1 − xe0)
r, x),

n > 1, r > 0, x ∈ [0, 1]. It is immediate that

(3.2) (Mn,r(x))′ = (U̺
n((e1 − ye0)

r , x))′x|y=x − rMr−1(x).

Using (3.2) and substituting y = x in Theorem 3.1 we arrive at

Corollary 3.2.

Mn,0(x) = 1, Mn,1(x) = 0,

and, for r > 1,

Mn,r+1(x) =
r(̺ + 1)Ψ(x)

n̺ + r
· Mn,r−1(x)(3.3)

+
r(1 − 2x)

n̺ + r
· Mn,r(x) +

̺Ψ(x)

n̺ + r
· (Mn,r(x))′.

Here are some important particular cases:

Corollary 3.3.

M2(x) =
(̺ + 1)x(1 − x)

n̺ + 1
,

M3(x) =
(̺ + 1)(̺ + 2)x(1 − x)(1 − 2x)

(n̺ + 1)(n̺ + 2)
,

M4(x) =
3̺(̺ + 1)2Ψ2(x)n

(n̺ + 1)(n̺ + 2)(n̺ + 3)

+
−6(̺ + 1)(̺2 + 3̺ + 3)Ψ2(x) + (̺ + 1)(̺ + 2)(̺ + 3)Ψ(x)

(n̺ + 1)(n̺ + 2)(n̺ + 3)
.

Next we give representations of the images of the monomials under the U̺
n. Writing

for shortness also Tn,r(x) := T ̺
n,r(x) := U̺

n(er, x), n > 1, r > 0, x ∈ [0, 1], we have
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Corollary 3.4.

Tn,0(x) = 1, Tn,1(x) = x,

and for r > 1

(3.4) Tn,r+1(x) =
n̺x + r

n̺ + r
· Tn,r(x) +

̺Ψ(x)

n̺ + r
· (Tn,r(x))′.

In the next lemma we give a more explicit representation of the polynomi-

als Tn,r(x). We use the following notation: if a is a real number and r > 0 is an

integer, then put (a)r := a(a − 1) . . . (a − r + 1) and [a]r := a(a + 1) . . . (a + r − 1).

Hence (a)0 = 1 = [a]0. Also, for a > 0 and an integer r > 0, define (a)−r =

((a + 1) . . . (a + r))−1. Moreover, for m < j we put
(

m
j

)

= 0.

Lemma 3.5. For n > 1, r > 0, x ∈ [0, 1], we have:

Tn,r(x) = An,rx
r + Bn,rx

r−1 + Cn,rx
r−2 + Rn,r(x), where(3.5)

An,r = ̺r · (n)r

[n̺]r
,(3.6)

Bn,r = ̺r−1 · (n)r−1

[n̺]r
· (̺ + 1)

(

r

2

)

,(3.7)

Cn,r = ̺r−2 · (n)r−2

[n̺]r
· (̺ + 1)

[

3(̺ + 1)

(

r

4

)

+ (̺ + 2)

(

r

3

)]

(3.8)

and Rn,r is a polynomial of degree r − 3.

P r o o f. From (3.4) it follows immediately by induction that Tn,r(x) are poly-

nomials of degree r in x. It remains to prove the representations claimed. For r = 0

the correctness of the coefficients is immediately verified. Using formula (3.4) we

arrive, for r > 0, at the following equations by equating coefficients:

An,r+1 =
̺(n − r)

n̺ + r
· An,r,

Bn,r+1 =
r(̺ + 1)

n̺ + r
· An,r +

̺(n − r + 1)

n̺ + r
· Bn,r,

Cn,r+1 =
(̺r − ̺ + r)

n̺ + r
· Bn,r +

̺(n − r + 2)

n̺ + r
· Cn,r.

By the induction hypothesis we infer:

An,r+1 = ̺r · ̺(n − r)

n̺ + r
· (n)r

[n̺]r
= ̺r+1 · (n)r+1

[n̺]r+1
,

Bn,r+1 = ̺r(̺ + 1) · (n)r

[n̺]r+1

[

r +

(

r

2

)]

= ̺r(̺ + 1) · (n)r

[n̺]r+1
·
(

r + 1

2

)

,

Cn,r+1 = ̺r−1(̺ + 1) · (n)r−1

[n̺]r+1
·
[

(̺r − ̺ + r)

(

r

2

)

+ 3(̺ + 1)

(

r

4

)

+ (̺ + 2)

(

r

3

)]

,
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and

(̺r − ̺ + r)

(

r

2

)

+ 3(̺ + 1)

(

r

4

)

+ (̺ + 2)

(

r

3

)

= [(̺ + 1)(r − 2) + ̺ + 2]

(

r

2

)

+ 3(̺ + 1)

(

r

4

)

+ (̺ + 2)

(

r

3

)

= (̺ + 1)

[

(r − 2)

(

r

2

)

+ 3

(

r

4

)]

+ (̺ + 2)

[(

r

2

)

+

(

r

3

)]

= 3(̺ + 1)

(

r + 1

4

)

+ (̺ + 2)

(

r + 1

3

)

.

This completes the proof. �

4. Preservation of convexity

An important shape preservation feature of both the Un and the Bn is that they

preserve convexity of all orders. In fact, this very property of the Bn is the main rea-

son for using Bézier curves as main (conceptual) tools in Computer Aided Geometric

Design. In this section we first prove convexity preservation of all orders k > −1 by

the operators U̺
n.

We briefly recall the definition of the above notion (also in the hope to remove

some confusion). The term convex of order k > −1 was used by Tiberiu Popoviciu

in Romanian literature of the 1930’s, and convexity of order k = −1, i.e., k + 1 = 0,

meant positivity to him. The reason for this is that positivity of a function can be

expressed in terms of divided differences of order k +1 = −1+1, i.e., in terms of the

inequality

[f ; x0, . . . xk+1] > 0 with k = −1.

We also recall this concept. Let f be defined on a compact interval [a, b], and

let k > −1. Consider k + 1 distinct points xi ∈ [a, b], 0 6 i 6 k, and denote by

[f ; x0, . . . xk] the divided difference of order k + 1 of f , relative to these k + 1 points.

A function f is named convex of order k if all its divided differences of order k + 1

are not negative. Hence in what follows convexity of order −1 will mean positivity

in the usual sense, convexity of order 0 will stand for monotonic increasement, and

convexity of order k = 1 will stand for convexity as used in the Western hemisphere.

The reader should be aware of the fact that the terms convexity/concavity have

always carried different mathematical connotations in the East and the West and

normally require further explanation.
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An operator acting on a space of functions defined over an interval [a, b] is named

convex of order k > −1 if it transforms any k-convex function from its domain of

definition into a k-convex function in its range.

The next assertation shows that the bridging operators U̺
n, ̺ > 0, n > 1, have

this property.

Theorem 4.1. The operators U̺
n, ̺ > 0, n > 1, are convex of order r − 1 for all

0 6 r 6 n.

P r o o f. In order to show that the operators U̺
n are convex of order r − 1, 0 6

r 6 n, it suffices to show that we have (U̺
n(f))(r) > 0 for any function f ∈ Cr[0, 1]

such that f (r) > 0. For r = 0 this fact is obvious, since U̺
n is positive. So let r > 1

and fix a function f ∈ Cr[0, 1] such that f (r) > 0.

We make the convention that if the integers m, q do not satisfy the condition

0 6 q 6 m, then pm,q(x) = 0 for x ∈ [0, 1]. The following formula can be proved by

induction with regard to r:

(pn,k(x))(r) =
n!

(n − r)!

r
∑

j=0

(

r

j

)

(−1)jpn−r,k−r+j(x), 0 6 k 6 n, x ∈ [0, 1].

We thus obtain

(U̺
n(f, x))(r) =

n!

(n − r)!

n
∑

k=0

r
∑

j=0

(

r

j

)

(−1)jpn−r,k−r+j(x)F ̺
n,k(f)

=
n!

(n − r)!

n−r
∑

l=0

pn−r,l(x)Φn,l(f),

where the functionals Φn,l, 0 6 l 6 n − r are defined by

Φn,l(g) :=
r

∑

i=0

(

r

i

)

(−1)i+rF ̺
n,l+i(g), g ∈ C[0, 1].

In order to prove that (U̺
n(f, x))(r) > 0, x ∈ [0, 1], it suffices to prove Φn,l(f) > 0

for 0 6 l 6 n − r.

We have

(4.1) Φn,l(ej) = 0, 0 6 j < r, 0 6 l 6 n − r.
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Indeed, for j = 0 we use the fact that F ̺
n,l+i(e0) = 1, 0 6 i 6 r, 0 6 l 6 n − r. If

j > 1 we have

Φn,l(ej) =

r
∑

i=0

(

r

i

)

(−1)i+rF ̺
n,l+i(ej)

=
Γ(n̺)

Γ(n̺ + j)

r
∑

i=0

(

r

i

)

(−1)i+r(t(l+i)̺+j−1)(j)|t=1

= (−1)r Γ(n̺)

Γ(n̺ + j)
(tl̺+j−1(1 − t̺)r)(j)|t=1

= (−1)r Γ(n̺)

Γ(n̺ + j)

j
∑

s=0

(

j

s

)

(tl̺+j−1)(j−s)((1 − t̺)r)(s)|t=1.

Note that this calculus is valid also for l = 0 or l = n− r, where the functionals F ̺
n,0

and F ̺
n,n appear, since we have F ̺

n,0(ej) = 0 = Γ(n̺)/Γ(n̺ + j) · (tj−1)(j)|t=1 and

F ̺
n,n(ej) = 1 = Γ(n̺)/Γ(n̺ + j) · (t̺n+j−1)(j)|t=1.

Next, note the following formula, which can be proved by induction:

((1 − t̺)r)(s) = (1 − t̺)r−sQs(t), 0 6 s < r,

where Qs is an infinitely times differentiable function. This yields relation (4.1).

From the Taylor formula we obtain, for t ∈ [0, 1]:

f(t) =
r−1
∑

j=0

f (j)(0)

j!
· tj + Rr(t), where Rr(t) =

∫ t

0

(t − u)r−1

(r − 1)!
· f (r)(u) du.

Using relation (4.1) we obtain, for 0 < l < n − r:

Φn,l(f) = Φn,l

(r−1
∑

j=0

f (j)(0)

j!
· ej + Rr

)

= Φn,l(Rr)(4.2)

=
r

∑

i=0

(

r

i

)

(−1)i+r

∫ 1

0

µ̺
n,l+i(t)

(
∫ t

0

(t − u)r−1

(r − 1)!
· f (r)(u) du

)

dt

=

∫ 1

0

f (r)(u)

( r
∑

i=0

(

r

i

)

(−1)i+r

∫ 1

u

µ̺
n,l+i(t)

(t − u)r−1

(r − 1)!
dt

)

du.

In the case l = 0, for i = 0, since F ̺
n,0(Rr) = 0, we obtain a formula similar to (4.2)

but in which the term
∫ 1

u µ̺
n,0(t)(t − u)r−1/(r − 1)! dt must be replaced by 0. In the

case l = n−r, for i = r, since F ̺
n,n(Rr) =

∫ 1

0
(1 − u)r−1/(r − 1)!·f (r)(u) du, we obtain
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a formula similar to (4.2), but in which the term
∫ 1

u µ̺
n,n(t)(t − u)r−1/(r − 1)! dtmust

be replaced by (1 − u)r−1/(r − 1)!.

From relation (4.2) it follows that in order to prove that Φn,l(f) > 0 for 0 6 l 6

n − r it is sufficient to prove that Gl(u) > 0, u ∈ [0, 1], 0 6 l 6 n − r, where

Gl(u) =
r

∑

i=0

(

r

i

)

(−1)i+rGn,l+i(u)

and

Gn,l+i(u) =























∫ 1

u

µ̺
n,l+i(t)

(t − u)r−1

(r − 1)!
dt, 1 6 l + i 6 n − 1,

0, l + i = 0,

(1 − u)r−1

(r − 1)!
, l + i = n.

For 0 6 k 6 r − 1 we obtain

(Gn,l+i)
(k)(u) =























(−1)k

∫ 1

u

µ̺
n,l+i(t)

(t − u)r−1−k

(r − 1 − k)!
dt, 1 6 l + i 6 n − 1,

0, l + i = 0,

(−1)k (1 − u)r−1−k

(r − 1 − k)!
, l + i = n,

while

(Gn,l+i)
(r)(u)) =











(−1)rµ̺
n,l+i(u), 1 6 l + i 6 n − 1,

0, l + i = 0,

0, l + i = n.

For 0 6 k 6 r − 1 and 0 6 l 6 n − r we get

G
(k)
l (0) = 0,(4.3)

G
(k)
l (1) = 0.(4.4)

Indeed, relation (4.3) for 0 6 k 6 r − 1 follows from formula (4.1) since G
(k)
l (0) =

(−1)k/(r − 1 − k)! · Φn,l(er−1−k). Relation (4.4) is immediate.

On the other hand, we can write for 0 6 l 6 n − r and u ∈ (0, 1):

(4.5) G
(r)
l (u) =

r
∑

i=0

(−1)i

(

r

i

)

( u

1 − u

)i̺

· Γ(n̺)ul̺−1(1 − u)(n−l)̺−1

Γ((l + i)̺)Γ((n − l − i)̺)
,

with the observation that in the case l = 0 the term for i = 0 drops and in the case

l = n−r the term for i = r drops. From relation (4.5) we obtain that the functionG
(r)
l

has at most r changes of sign in the interval (0, 1). Now using relations (4.3),
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(4.4) and Rolle’s theorem we infer, inductively, that the function G
(k)
l has at most

k changes of sign. Indeed, suppose the assertion to be true for k, 1 6 k 6 r and

let x1 < . . . < xm be the interior points where G
(k)
l changes the sign, where, by

the induction hypothesis, m 6 k. It follows that the function G
(k−1)
l can have

at most one point at which it changes the sign in each of the intervals (xi, xi+1),

1 6 i 6 m− 1, but it cannot have a point of change of sign in the interval (0, x1) or

in the interval (xm, 1), since G
(k−1)
l (0) = 0 and G

(k−1)
l (1) = 0. So, G

(k−1)
l can have

at most m − 1 6 k − 1 changes of sign.

Finally, we obtain that Gl has no changes of sign, i.e., Gl has constant sign on the

interval [0, 1]. From the relation

Gl(u) =

∫ 1

u

r
∑

i=0

(−1)i+r

(

r

i

)

( t

1 − t

)i̺

· tl̺−1(1 − t)(n−l)̺−1

B((l + i)̺, (n − l − i)̺)

(t − u)r−1

(r − 1)!
dt

and the limit

lim
t→1

r
∑

i=0

(−1)i+r

(

r

i

)

( t

1 − t

)i̺ 1

B((l + i)̺, (n − l − i)̺)
= ∞

we obtain that Gl is non negative on the interval [0, 1]. The proof is complete. �

The corollary below is a useful consequence of our previous observations. Its proof

shows that operators that are convex of order k automatically map Πk into Πk.

Corollary 4.2. We have

(4.6) U̺
n(Πk) ⊂ Πk for 0 6 k 6 n, ̺ > 0.

P r o o f. If f ∈ Πk, k < n, then f (k+1) = 0. Since U̺
n is convex of order k, it

follows that (U̺
n(f))(k+1) > 0 and (U̺

n(f))(k+1) 6 0, i.e., (U̺
n(f))(k+1) = 0. This

means that U̺
n(f) ∈ Πk. The case k = n is obvious. �

5. Degree of simultaneous approximation

We now give estimates for simultaneous approximation for the operators U̺
n in

terms of the first and second order moduli. There exist estimates for simultaneous
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approximation for general convex operators, using the classical second modulus, first

given by Gonska [6], see also Kascó [9]. Here we use a similar method in order to

obtain estimates using also other types of moduli. Consider operators Qn,r defined

by Qn,r := Dr ◦ U̺
n ◦ Ir, where Dr denotes the differential operator of the rth order

and Ir produces the corresponding antiderivatives, and is given by

Ir(f, x) :=

∫ x

0

(x − t)r−1

(r − 1)!
· f(t) dt, f ∈ C[0, 1], x ∈ [0, 1].

The convexity of order r− 1 of the operators U̺
n ensures that the operators Qn,r are

positive operators. Also, we have the important equality

(5.1) Qn,r(f
(r), x) = (DrU̺

n)(f, x) for f ∈ Cr[0, 1].

We next find estimates for the pointwise difference DrU̺
n(f, x) − f (r)(x) =

Qn,r(f
(r), x) − f (r)(x) using the first three moments of the operator Qn,r. We

use the abbreviations α̺
n,r(x) = Qn,r(e0, x), β̺

n,r(x) = Qn,r(e1 − xe0, x), and

γ̺
n,r(x) = Qn,r((e1 − xe0)

2, x).

Lemma 5.1. For n > 1, x ∈ [0, 1] and ̺ > 0 we have

α̺
n,r(x) = ̺r · (n)r

[n̺]r
,

β̺
n,r(x) = ̺r(̺ + 1) · (n)r

[n̺]r+1
· r

2
· (1 − 2x),

γ̺
n,r(x) = ̺r(̺ + 1) · (n)r

[n̺]r+2

×
(

(n̺ − (̺ + 1)r(r + 1))x(1 − x) +
r

12
· ((3r + 1)(̺ + 1) + 4)

)

.

P r o o f. We apply formula (5.1) and Lemma 3.5. We have

α̺
n,r = (DrU̺

n)
( 1

r!
· er, x

)

= An,r = ̺r · (n)r

[n̺]r
,

β̺
n,r = (DrU̺

n)
( 1

(r + 1)!
· er+1 −

x

r!
· er, x

)

= (An,r+1 − An,r)x +
1

r + 1
· Bn,r+1

= ̺r(̺ + 1) · (n)r

[n̺]r+1
· r

2
· (1 − 2x),

γ̺
n,r = (DrU̺

n)
( 2

(r + 2)!
· er+2 −

2x

(r + 1)!
· er+1 +

x2

r!
· er, x

)

= (An,r+2 − 2An,r+1 + An,r)x
2

+
( 2

r + 2
· Bn,r+2 −

2

r + 1
· Bn,r+1

)

x +
2

(r + 1)(r + 2)
· Cn,r+2.

After simple computations we get for γ̺
n,r the form given in the claim. �
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We denote by ω1, ω2 the usual first order and second order moduli of con-

tinuity and by ωϕ
1 , ωϕ

2 the first and second order Ditzian-Totik moduli, where

ϕ(x) =
√

x(1 − x), x ∈ [0, 1]. Applying to the operator Qn,r and to the function f (r)

the general estimates for positive linear operators, namely, the estimate with modu-

lus ω1 of Mond [12] and the estimates with the combination of the first and second

order moduli given in Păltănea [16], we obtain directly the following results.

Theorem 5.2. For f ∈ Cr[0, 1], r > 0, x ∈ [0, 1] and 0 < h 6 1, we have

|(U̺
n(f, x) − f(x))(r)|(5.2)

6 (1 − α̺
n,r(x)) · |f (r)(x)| +

(

α̺
n,r(x) +

1

h2
· γ̺

n,r(x)
)

ω1(f
(r), h);

for f ∈ Cr[0, 1], r > 0, x ∈ [0, 1] and 0 < h 6 1
2 , we obtain

|(U̺
n(f, x) − f(x))(r)|(5.3)

6 (1 − α̺
n,r(x)) · |f (r)(x)| + |β̺

n,r(x)| 1
h

ω1(f
(r), h)

+
(

α̺
n,r(x) +

1

2h2
· γ̺

n,r(x)
)

ω2(f
(r), h);

and for f ∈ Cr[0, 1], r > 0, x ∈ (0, 1) and 0 < h 6 1
2 , we have

|(U̺
n(f, x) − f(x))(r)|(5.4)

6 (1 − α̺
n,r(x)) · |f (r)(x)| +

|β̺
n,r(x)|

2hϕ(x)
· ωϕ

1 (f (r), 2h)

+
(

α̺
n,r(x) +

3

2
·

γ̺
n,r(x)

(hϕ(x))2

)

ωϕ
2 (f (r), h),

where the coefficients α̺
n,r(x), β̺

n,r(x) and γ̺
n,r(x) are given in Lemma 5.1.

Remark 5.3. For n̺ > (̺ + 1)r(r +1) and ̺ > 1 the following upper bounds are

valid:

1 − α̺
n,r(x) = 1 −

r−1
∏

i=0

(n − r + 1 + i)̺

n̺ + i
6 1 −

(

1 − r − 1

n

)r

6
r(r − 1)

n
,

|β̺
n,r(x)| = |̺r(̺ + 1) · (n)r

[n̺]r+1
· r

2
· (1 − 2x)| 6

̺ + 1

̺
· r

2n
,

γ̺
n,r(x) 6

̺ + 1

(n̺)2

(n̺

4
+

r(1 − ̺)

6

)

6
̺ + 1

̺
· 1

4n
.

Remark 5.4. For r = 0 we have 1 − α̺
n,r(x) = 0 and β̺

n,r(x) = 0, so that the

estimates given in Theorems 5.2 and 5.5 reduce to estimates with a single term only.

Letting ̺ → ∞, we obtain
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Theorem 5.5. The Bernstein operators satisfy estimates similar to those in Theo-

rem 5.2, if we replace the quantities 1−α̺
n,r(x), |β̺

n,r(x)| and γ̺
n,r(x) by the quantities

1 − αn,r(x), |βn,r(x)| and γn,r(x), respectively, where

1 − αn,r(x) = 1 − (n)r

nr
6

r(r − 1)

2n
,

|βn,r(x)| =
(n)r

nr
· r

2n
· |1 − 2x| 6

r

2n
,

γn,r(x) =
(n)r

nr

(n − r(r + 1)

n2
· x(1 − x) +

r(3r + 1)

12n2

)

6
1

4n

and where the last inequality is true for n > r(r + 1).

The estimates given in Theorems 5.2 and 5.5 are quantitative results for pointwise

and also global simultaneous approximation by the operators U̺
n and Bn. Indeed, if

we put for instance h := 1/
√

n, we obtain, with the notation U∞

n = Bn,

Theorem 5.6.

(5.5) lim
n→∞

‖(U̺
n(f))(r) − f (r)‖∞ = 0

for ̺ ∈ (0,∞] and f ∈ Cr[0, 1].
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[15] R. Păltănea: Une propriété d’extrémalité des valeurs propres des opérateurs polynô-
miaux de Durrmeyer généralisés. Math., Rev. Anal. Numér. Théor. Approximation,
Anal. Numér. Théor. Approximation 15 (1986), 57–64. (In French.)
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P ă l t ă n e a, Transilvania University, RO-500036 Braşov, Romania, e-mail: radupaltanea
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