Previous |  Up |  Next

Article

Keywords:
absolute integrability; gauge Integral; H-K integral; Lebesgue integral
Summary:
It is commonly known that absolute gauge integrability, or Henstock-Kurzweil (H-K) integrability implies Lebesgue integrability. In this article, we are going to present another proof of that fact which utilizes the basic definitions and properties of the Lebesgue and H-K integrals.
References:
[1] Bartle, R.: Return to the Riemann integral. Am. Math. Mon. 103 (1996), 625-632 . DOI 10.2307/2974874 | MR 1413583 | Zbl 0884.26007
[2] Bugajewska, D.: On the equation of $n$th order and the Denjoy integral. Nonlinear Anal. 34 (1998), 1111-1115. MR 1637221 | Zbl 0948.34003
[3] Bugajewska, D., Bugajewski, D.: On nonlinear integral equations and nonabsolute convergent integrals. Dyn. Syst. Appl. 14 (2005), 135-148 . MR 2128317 | Zbl 1077.45004
[4] Bugajewski, D., Szufla, S.: On the Aronszajn property for differential equations and the Denjoy integral. Ann. Soc. Math. 35 (1995), 61-69 . MR 1384852 | Zbl 0854.34005
[5] Chew, T., Flordeliza, F.: On $x'=f(t,x)$ and Henstock-Kurzweil integrals. Differ. Integral Equ. 4 (1991), 861-868 . MR 1108065 | Zbl 0733.34004
[6] Henstock, R.: Definitions of Riemann type of the variational integral. Proc. Lond. Math. Soc. 11 (1961), 404-418. MR 0132147
[7] Henstock, R.: The General Theory of Integration. Oxford Math. Monogr., Clarendon Press, Oxford (1991) . MR 1134656 | Zbl 0745.26006
[8] Kurzweil, J.: Generalized Ordinary Differential Equations and Continuous Dependence on a Parameter. Czech. Math. J. 7 (1957), 418-449 . MR 0111875 | Zbl 0090.30002
[9] McLeod, R.: The Generalized Riemann Integral. Carus Math. Monogr., no. 20, Mathematical Association of America, Washington (1980) . MR 0588510 | Zbl 0486.26005
[10] Munkres, J.: Analysis on Manifolds. Addison-Wesley Publishing Company, Redwood City, CA (1991) . MR 1079066 | Zbl 0743.26006
[11] Pfeffer, W.: The divergence theorem. Trans. Am. Math. Soc. 295 (1986), 665-685 . MR 0833702 | Zbl 0596.26007
[12] Pfeffer, W.: The multidimensional fundamental theorem of calculus. J. Austral. Math. Soc. (Ser. A) 43 (1987), 143-170 . MR 0896622 | Zbl 0638.26011
[13] Rudin, W.: Principles of Mathematical Analysis. Third Ed., McGraw-Hill, New York (1976) . MR 0385023 | Zbl 0346.26002
[14] Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1987). MR 0924157 | Zbl 0925.00005
[15] Schwabik, Š.: The Perron integral in ordinary differential equations. Differ. Integral Equ. 6 (1993), 863-882 . MR 1222306 | Zbl 0784.34006
[16] Spivak, M.: Calculus on Manifolds. W. A. Benjamin, Menlo Park, CA (1965). MR 0209411 | Zbl 0141.05403
[17] Stromberg, K.: An Introduction to Classical Real Analysis. Waldworth, Inc (1981). MR 0604364 | Zbl 0454.26001
Partner of
EuDML logo