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Abstract. It is commonly known that absolute gauge integrability, or Henstock-Kurzweil
(H-K) integrability implies Lebesgue integrability. In this article, we are going to present
another proof of that fact which utilizes the basic definitions and properties of the Lebesgue
and H-K integrals.
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1. Introduction

Since its introduction in the late 1950’s [6], [7], the Henstock-Kurzweil integral has

found many applications; especially in the theory of ordinary differential equations

as well as the theory of integral equations because in particular it can integrate any

real-valued function that is Lebesgue integrable on a closed rectangle In in R
n [2],

[3], [4], [5], [8], [15]. In fact, the gauge integral is necessary to yield a solution to the

classical initial Cauchy problem that is not obtainable with the classical existence

results [Peano existence Theorem, Carathéodory existence Theorem] which depend

on Lebesgue integration. The primary purpose of this work is to prove a restricted

but potent converse to this relationship between the gauge and Lebesgue integrals

which can be used to easily extend important properties of Lebesgue integration to

the gauge integral. In particular, the fact that a real valued function is absolutely

gauge integrable on In ⊂ R
n if and only if it is Lebesgue integrable on In yields a

direct, simple proof of the dominated and monotone convergence theorems for the

gauge integral [11], [12]. This converse is the following:
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Theorem 1.1. If a real valued function is absolutely gauge integrable on a cell

In ⊂ R
n, then it is Lebesgue integrable on In.

The basic approach to proving Theorem 1.1 presented in this work augments the

purposes served by previous proofs of this result. In [9], R.McLeod develops The-

orem 1.1 independent of the Lebesgue integral by first proving the dominated con-

vergence theorem for the gauge integral. In [11], [12] W.Pfeffer defines a gauge type

of integral in a general setting, and uses the concept of an indefinite gauge integral

defined on admissible sets to establish Theorem 1.1. The approach presented here is

shorter and more elementary than [9], [11], [12]. This author’s proof of Theorem 1.1

depends only on seminal concepts such as the fact that Lebesgue integrability on

In implies gauge integrability, the linearity of the gauge and Lebesgue integrals,

Lebesgue’s monotone convergence theorem, and the basic properties for the gauge

and Lebesgue integrals listed in the preliminaries.

2. Preliminaries

In this section, we are going to outline some basic definitions and properties which

we will use to prove Theorem 1.1.

Definitions 2.1 [1], [13], [16].

(a) Let ak, bk ∈ R : ak < bk for k = 1, . . . , n. The set I =
{

(x1, . . . , xn) ∈ R
n : ak 6

xk 6 bk, k = 1, . . . , n
}

is called a closed interval, n-cell or a cell in Rn, and will

often be denoted by the symbol In to emphasize dimension. If ak < xk < bk

then I is called an open interval. A k-th face of I, sp
k, will denote the set of all

points in I where the k-th coordinate is exactly ak if p = 0, or bk if p = 1. Note

that the boundary of I equals the union of all faces of I [10].

(b) A partition of the n-cell In is a finite collection of q sub-cells Ci in R
n where In =

q
⋃

i=1

Ci, and the sub-cells Ci are pairwise disjoint except for common boundary

point(s).

(c) A tagged partition of In, P =
{

(Ci, ti)
}q

i=1
, is a collection of ordered pairs

where the cells Ci form a partition of I
n and the points ti ∈ Ci are defined to

be the tags.

(d) The distance of the cell, Ci, denoted by diam(Ci), is defined as diam(Ci) =

sup
{

|x − y| : x,y ∈ Ci

}

, where the diameter is computed using the Euclidean

metric on R
n.

(e) If the n-cell C =
{

(x1, . . . , xn) : ak 6 xk 6 bk, k = 1, . . . , n
}

then the volume of

C, denoted by |C|, is defined as |C| =
n
∏

k=1

(bk − ak).
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(f) Let f be the real valued function f : In → R. The Riemann sum of f corre-

sponding to the tagged partition P =
{

(Ci, ti)
}q

i=1
of In is the real number

q
∑

i=1

f(ti)|Ci|.

(g) A strictly positive function δ on In is called a gauge on In.

(h) If δ is a gauge on In and P =
{

(Ci, ti)
}q

i=1
is a tagged partition of In, then P

is said to be a δ-fine partition if diam(Ci) < δ(ti) for i = 1, . . . , q.

The following lemma helps to make the definition of the gauge integral so versa-

tile.

Cousin’s Lemma 2.2 [1]. Let In be an n-cell in R
n. Let δ be a gauge on In.

Then there exists a δ-fine partition of In.

Definition 2.3 [1]. Let f be the real valued function f : In → R. The real

number A ∈ R is the generalized Riemann integral or the gauge integral of f on In

if for every ε > 0 there exists a gauge δε on In such that if P = {(Ci, ti}
q
i=1 is any

δ-fine tagged partition of In, then
∣

∣

∣

q
∑

i=1

f(ti)|Ci| − A
∣

∣

∣
< ε.

If such a real number A exists, then f is said to be gauge integrable or generalized

Riemann integrable on In, which is indicated by the notation f ∈ R
∗(In), and the

real number A, the gauge integral of f , is denoted as (G)
∫

In f(x) dV .

2.4 Basic properties of the gauge integral [9].

(a) Let m ∈ N, and let a1, . . . , am be real valued constants. Suppose that the real

valued functions f1, . . . , fm are gauge integrable on In. Then a1f1 + . . .+amfm

is gauge integrable on In, and

(G)

∫

In

m
∑

i=1

aifi dV =
m

∑

i=1

ai(G)

∫

In

fi dV

(b) Suppose that f and g are gauge integrable on In and that f 6 g. Then

(G)

∫

In

f dV 6 (G)

∫

In

g dV

The next lemma is fundamental for the theory of Henstock-Kurzweil integration.
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Henstock’s Lemma 2.5 [9]. Let the real valued function f be gauge integrable

on In. Let ε > 0, and let δε be a gauge on In:

∣

∣

∣

∣

q
∑

i=1

f(ti)|Ci| − (G)

∫

In

f dV

∣

∣

∣

∣

< ε

where P = {(Ci, ti)}
q
i=1 is any δε fine partition of In. Let P = {Ci}

q
i=1, and let E

be any nonempty subset of P . Then the following inequality holds:

∣

∣

∣

∣

∑

Ci∈E

[

f(ti)|Ci| − (G)

∫

Ci

f dV

]
∣

∣

∣

∣

6 ε.

The following result, presented by R.McLeod, is reformulated to fit the definition

of the gauge integral presented here.

The Covering Lemma 2.6 [9]. Let ∅ 6= E ⊂ In, and let δ be a gauge defined

on In. Then there exists a collection of cells S =
{

Ci

}p

i=1
, where p ∈ N ∪ {∞} and

where the following are true:

(a) each pair of the cells in S intersect at most along a common boundary,

(b) there exists a point ti ∈ Ci ∩ E and diam (Ci) < δ(ti) for i = 1, . . . , p,

(c) E ⊂
p
⋃

i=1

Cj ⊂ In.

Proposition 2.7 [9]. Suppose that the real valued function f is gauge integrable

on In and that S = {fm}∞m=1 is a sequence of real valued functions defined on In

for which lim
m→∞

fm(x) = f(x) for all x ∈ In. Then there exists T ∈ N such that fm

is gauge integrable if m > T .

Proposition 2.8 [9]. Let the real valued functions f, g, and h be gauge integrable

on In where f(x) 6 h(x) and g(x) 6 h(x) for all x ∈ In. Then f ∧ g, the pointwise

minimum of f and g, is also gauge integrable on In.

The symbols µ∗, M, and L(In) will respectively denote the Lebesgue outer mea-

sure, the collection of all Lebesgue measurable sets in R
n, and the class of all real

valued, Lebesgue integrable functions which are defined everywhere on In.
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Proposition 2.9 [13], [14]. Let f : In → R be non-negative. Then there

exists a monotonically increasing sequence {sm}∞m=1of simple functions sm =
rm
∑

k=1

cmk
χEmk

, rm ∈ N with non-negative coefficients cmk
, where Emu

∩ Emv
= ∅

if u, v ∈ {1, . . . , rm} : u 6= v,
rm
⋃

k=1

Emk
= In, such that 0 6 sm(x) 6 f(x) and

lim
m→∞

sm(x) = f(x) for all x ∈ In. If f is also Lebesgue measurable, this sequence

{sm}∞m=1 can be constructed so that each of its simple functions is also Lebesgue

measurable.

Proposition 2.10 [17]. Let A ∈ M, µ∗(A) < +∞, and E ⊂ A. If µ∗(A) =

µ∗(E) + µ∗(A \ E), then E ∈ M.

Proposition 2.11 [11], [12]. If f : In → R is Lebesgue integrable on In, then f

is gauge integrable on In to the same value.

3. Main result

Theorems 3.1 through 3.6, the most significant part of this proof, will establish

the result that a non-negative function f ∈ R∗(In) is Lebesgue measurable.

The proof of the following theorem is modified to fit the version of the gauge

integral presented here.

Theorem 3.1 [9]. Let ∅ 6= E ⊂ In, and suppose that (G)
∫

In χE dV exists. Then

for all ε > 0 there exists a sequence {Cj}
p
j=1 of cells where p ∈ N ∪ {∞} for which

E ⊂
p
⋃

j=1

Cj ⊂ In and

(1)

p
∑

j=1

|Cj | < (G)

∫

In

χE dV + ε.

P r o o f. Since (G)
∫

In χE dV exists, there exists a gauge, δε/2, such that for any

δε/2 fine partition {(Di, ti)}
q
i=1 of I

n,

(2)

∣

∣

∣

∣

q
∑

i=1

χE(ti)|Di| − (G)

∫

In

χE dV

∣

∣

∣

∣

<
ε

2
.

By the covering lemma, there exists a collection {Cj}
p
j=1 of cells, such that p ∈

N ∪ {∞}, where each pair of cells intersect at most along a common boundary, and
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where there exists tj ∈ E ∩ Cj such that

(3) diam(Cj) < δε/2(tj) for j = 1, . . . , p, and E ⊂

p
⋃

j=1

Cj ⊂ In.

Let k ∈ N : 1 6 k 6 p if p < ∞, or 1 6 k < p if p = ∞, and let Sk =
{

(Cj , tj)
}k

j=1
.

Note that since the boundary of
k
⋃

j=1

Ck consists of faces of cells, with each such

face parallel to n − 1 coordinate axes; then In \
k
⋃

j=1

Ck can be filled with cells, and

each such cell contains a δε/2-fine partition by Cousin’s Lemma. These facts and (3)

insure that all k of the cells in Sk can be contained in a δε/2 fine partition Qk of

In. Thus (2) holds for Qk, and so Henstock’s lemma applied to the subset Sk of Qk

implies that
k

∑

j=1

χE(tj)|Cj | 6 (G)

∫

In

χE dV +
ε

2
.

Since χE(tj) = 1 by (3), then

(4)

k
∑

j=1

|Cj | 6 (G)

∫

In

χE dV +
ε

2
.

If p < ∞, replace k with p in (4). If p = ∞, proceed as follows. Let rk =
k
∑

j=1

|Cj |, and

note that lim
k→∞

rk exists since the sequence of partial sums {rk}∞k=1 is an increasing

sequence that is bounded above by (G)
∫

In χE dV + ε
2 . Thus, (4) holds if the series

on the left side of the inequality is infinite by taking the limit of both sides as

k → ∞. In either case, the inequality in (4) becomes strict by replacing ε
2 with ε,

thus establishing (1). �

Theorem 3.2. Let In be any cell, and E any subset of Rn for which ∅ 6= E ⊂ In,

and suppose that χE is gauge integrable on In. Then

(5) (G)

∫

In

χE dV = µ∗(E).

P r o o f. First, we will show that (G)
∫

In χE dV is a lower bound for the set

(6)

{ q
∑

j=1

|Ij | : E ⊂

q
⋃

j=1

Ij : q ∈ N ∪ {∞} and each interval Ij is open

}

.
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Note that since χE is gauge integrable on In, then (G)
∫

In χE dV <
q
∑

j=1

|Ij | if
q
∑

j=1

|Ij | = +∞. Assume therefore that

(7)

q
∑

j=1

|Ij | < +∞.

Since

(8)

∫

In

χIj
dµ = µ∗(Ij ∩ In) 6 |Ij | < +∞,

then (7) and (8) imply that

(9)

q
∑

j=1

∫

In

χIj
dµ 6

q
∑

j=1

|Ij | < +∞.

The following argument will show that the sum on the left side of (9) is linear even

if q = ∞. Let k ∈ N, fk =
k
∑

j=1

χIj
, and let f =

∞
∑

j=1

χIj
. Since {fk}∞k=1 is a sequence

of nonnegative, Lebesgue measurable functions such that for all x ∈ In:

lim
k→∞

fk(x) = lim
k→∞

k
∑

j=1

χIj
(x) = f(x),

and 0 6 f1(x) 6 f2(x) 6 . . ., Lebesgue’s monotone convergence theorem implies

that

(10) lim
k→∞

∫

In

fk dµ =

∫

In

f dµ.

By linearity of the Lebesgue integral (and substitution on both sides of (10) if q = ∞),

(11)

∫

In

q
∑

j=1

χIj
dµ =

q
∑

j=1

∫

In

χIj
dµ < +∞.

Since χ[
⋃q

j=1
Ij ] 6

q
∑

j=1

χIj
and

q
⋃

j=1

Ij ∈ M, then χ[
⋃q

j=1
Ij ] is Lebesgue measurable.

Therefore

(12)

∫

In

χ[
⋃q

j=1
Ij ] dµ 6

∫

In

q
∑

j=1

χIj
dµ
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and so χ[
⋃q

j=1
Ij ] is Lebesgue integrable by transitivity and the final inequality in

(11). Since Lebesgue integrability of a real valued function defined on a cell implies

gauge integrability,

(13) (G)

∫

In

χ[
⋃q

j=1
Ij ] dV =

∫

In

χ[
⋃q

j=1
Ij ] dµ.

Since χE is gauge integrable and χE 6 χ[
⋃q

j=1
Ij ], then in turn (13), (12), (11), and

(9) imply that

(G)

∫

In

χE dV 6 (G)

∫

In

χ[
⋃q

j=1
Ij ] dV 6

q
∑

j=1

∫

In

χIj
dµ 6

q
∑

j=1

|Ij |.

Therefore, (G)
∫

In χE dV is a lower bound for the set (6).

Let ε > 0. The following argument will show that (G)
∫

In χE dV + ε is not a

lower bound for (6). By Theorem 3.1, there exists a sequence
{

Cj

}p

j=1
of cells where

p ∈ N ∪ {∞} for which E ⊂
p
⋃

j=1

Cj ⊂ In and

(14)

p
∑

j=1

|Cj | < (G)

∫

In

χE dV +
ε

2
.

Use the definition of Lebesgue measure to choose an open interval Jj : Cj ⊂ Jj and

|Jj | < |Cj | +
1
2ε/p for each j = 1, . . . , p if p < ∞, and |Jj | < |Cj | + ε/3j+1 for each

j ∈ N if p = ∞. In either case,

(15)

p
∑

j=1

|Jj | <

p
∑

j=1

|Cj | +
ε

2
⇒

p
∑

j=1

|Jj | −
ε

2
<

p
∑

j=1

|Cj |.

Inequality (14) and the final inequality in (15) yield the result

(16)

p
∑

j=1

|Jj | < (G)

∫

In

χE dV + ε,

which means that

(G)

∫

In

χE dV = inf

{ q
∑

j=1

|Ij | : E ⊂

q
⋃

j=1

Ij : q ∈ N ∪ {∞}

and each interval Ij is open

}

,

thereby establishing (5). �
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Theorem 3.3. Let E be a nonempty subset of In, and suppose that χE is gauge

integrable on In. Then E ∈ M.

P r o o f. Since (G)
∫

In χIn dV and (G)
∫

In χE dV exist and χIn\E = χIn − χE ,

then (G)
∫

In χIn\E dV exists by linearity.

Since In \ E, E ⊂ In, Theorem 3.2 implies that (G)
∫

In χE dV = µ∗(E) and

(G)
∫

In χIn\E dV = µ∗(In \ E).

Also (G)
∫

In χIn dV = µ∗(In). Therefore,

(17) µ∗(E) + µ∗(In \ E) = (G)

∫

In

χE dV + (G)

∫

In

χIn\E dV

= (G)

∫

In

χIn dV = µ∗(In).

Since In ∈ M, (17) implies that E ∈ M by Proposition 2.10. �

The Lebesgue measurability of a gauge integrable characteristic function will now

be extended to a gauge integrable simple function in Theorems 3.4 and 3.5, and then

to a non-negative real valued gauge integrable function in Theorem 3.6.

Theorem 3.4. Let s =
m
∑

k=1

dkχEk
, m ∈ N be a simple function where dk > 0 for

k = 1, . . . , m,
m
⋃

k=1

Ek ⊂ In and Eu ∩ Ev = ∅ for u, v ∈ {1, . . . , m} : u 6= v. If s is

gauge integrable on In, then the function χE1
+ . . . + χEm

is also gauge integrable

on In.

P r o o f. Note that since Eu∩Ev = ∅ for u 6= v, it follows that χE1
+ . . .+χEm

=

χ⋃
m
k=1

Ek
. Since each dk > 0 for k = 1, . . . , m, choose c ∈ R so that cdk > 1, which

implies that cs(x) > 1 for all x ∈
m
⋃

k=1

Ek. Let d = max{cdk}m
k=1. Since dχIn is

gauge integrable on In, dχIn(x) > χIn(x) and dχIn(x) > cs(x) for all x ∈ In, then

cs∧χIn , the pointwise minimum of the gauge integrable functions cs and χIn on In,

is also gauge integrable on In by Proposition 2.8. Thus, the relationship

(cs ∧ χIn)(x) = (χ⋃
m
k=1

Ek
)(x)

for all x ∈ In implies that the function χ⋃
m
k=1

Ek
= χE1

+. . .+χEm
is gauge integrable

on In.
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Theorem 3.5. Let s =
m
∑

k=1

dkχEk
, m ∈ N be a simple function with non-negative

coefficients dk, where
m
⋃

k=1

Ek ⊂ In and Eu∩Ev = ∅ for u 6= v. If s is gauge integrable

on In, then s is measurable in the Lebesgue sense.

P r o o f. This proof will proceed by induction on m, the number of terms in the

simple function s.

Let d1χF1
be a simple function that is gauge integrable on In, where F1 ⊂ In and

d1 > 0.

If d1 = 0, then d1χF1
(x) = 0 for each x ∈ In, and so in this case, d1χF1

is a

constant function, which is measurable in the Lebesgue sense.

If d1 > 0, then χF1
is gauge integrable on In by linearity, and hence Theorem 3.3

implies that F1 ∈ M. Therefore, d1χF1
is Lebesgue measurable.

Let k ∈ N, and let sk = d1χF1
+ . . . + dkχFk

be any simple function where
k
⋃

j=1

Fj ⊂ In, dj > 0, and Fu ∩Fv = ∅ if u, v ∈ {1, . . . , k} : u 6= v. Assume that if any

such simple function sk is gauge integrable on In, then sk is Lebesgue measurable.

Now let sk+1 = b1χE1
+ . . . + bk+1χEk+1

be any simple function subject to the

conditions
k+1
⋃

i=1

Ei ⊂ In, bi > 0, Eu∩Ev = ∅ if u, v ∈ {1, . . . , k+1} : u 6= v, and sk+1 is

gauge integrable on In. Since sk+1 is a simple function, then assume, without loss of

generality, that b1 > b2 > . . . > bk > bk+1 > 0. Then the function rk+1 = χE1
+ . . .+

χEk+1
is gauge integrable on In by Theorem 3.4 if bk+1 > 0, and by the inductive

hypothesis if bk+1 = 0. By linearity, the function rk+1 − b−1
1 sk+1 is also gauge

integrable on In. Thus, rk+1 − b−1
1 sk+1 =

(

1− b2/b1

)

χE2
+ . . .+

(

1− bk+1/b1

)

χEk+1
.

Now since 0 < 1 − b2/b1 < . . . < 1 − bk+1/b1 6 1, the coefficients in rk+1 −

b−1
1 sk+1 are distinct and hence rk+1−b−1

1 sk+1 is a simple function with non-negative

coefficients that is gauge integrable. Thus, the inductive hypothesis implies that

rk+1 − b1
−1sk+1 is Lebesgue measurable and so E2, . . . , Ek+1 ∈ M. Now since

rk+1 = χ⋃k+1

i=1
Ei
is gauge integrable on In and

k+1
⋃

i=1

Ei ⊂ In, Theorem 3.3 implies

that
k+1
⋃

i=1

Ei ∈ M. Since M is a sigma ring,
k+1
⋃

j=2

Ej ∈ M, and hence E1 =
(k+1

⋃

i=1

Ei

)

\

(k+1
⋃

j=2

Ej

)

∈ M [13], [14]. Thus since E1, E2, . . . , Ek+1 ∈ M, the simple function sk+1

is Lebesgue measurable. Therefore by induction, this theorem is true. �

Theorem 3.6. Let f : In → R be non-negative. If f is gauge integrable on In,

then f is measurable in the Lebesgue sense.
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P r o o f. Since f is non-negative on In, Proposition 2.9 implies that there exists

an increasing sequence {sm}∞m=1 of simple functions sm =
rm
∑

k=1

cmk
χEmk

, rm ∈ N with

non-negative coefficients cmk
, where Emu

∩ Emv
= ∅ if u, v ∈ {1, . . . , rm} : u 6= v,

rm
⋃

k=1

Emk
= In and lim

m→∞
sm(x) = f(x) for all x ∈ In. Hence by Proposition 2.7,

there exists T ∈ N: each simple function sm is gauge integrable on In if m >

T . Theorem 3.5 then implies that each such sm is measurable in the Lebesgue

sense, and consequently, h is Lebesgue measurable, where h(x) = sup
{

sm(x)
}

for

all x ∈ In, m > T [13], [14]. But since {sm}∞m=1 is monotonically increasing,

sup
{

sm(x) : m > T
}

= lim
m→∞

sm(x). Thus h(x) = f(x) for all x ∈ In, and so f is

measurable in the Lebesgue sense. �

Theorem 3.7. Suppose that f : In → R is non-negative and gauge integrable on

In. Then f is Lebesgue integrable on In and

(18)

∫

In

f dµ = (G)

∫

In

f dV.

P r o o f. Since f is gauge integrable on In, then f is Lebesgue measurable on

In by Theorem 3.6. Since f is also nonnegative, there exists, by Proposition 2.9 a

sequence {sm}∞m=1 of simple, Lebesgue measurable functions such that for all x ∈ In,

(19) 0 6 sm(x) 6 f(x) and lim
m→∞

sm(x) = f(x)

Now since each of these simple functions sm is Lebesgue measurable, then each sm is

Lebesgue and therefore gauge integrable on In to the same value. By this fact and

(19),
∫

In

sm dµ = (G)

∫

In

sm dV 6 (G)

∫

In

f dV

which yields

lim
m→∞

∫

In

sm dµ 6 (G)

∫

In

f dV < +∞.

Also, by Lebesgue’s monotone convergence theorem,

lim
m→∞

∫

In

sm dµ =

∫

In

f dµ

so that
∫

In f dµ < +∞ by substitution, and (18) follows immediately by Proposi-

tion 2.11. �
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The principal theorem in this article, Theorem 1.1, now follows trivially from the

previous results because all of the intricate work for this proof was completed there.

For the sake of generality, Theorem 1.1 is included as part (b) of the following theorem

contained in W. Pfeffer’s works, which states the complete relationship between the

gauge and Lebesgue integrals.

Theorem 3.8 (The relationship between the gauge and Lebesgue integrals) [11],

[12]. Let f : In → R.

(a) If |f | ∈ L(In), then f ∈ L(In) and f , |f | ∈ R∗(In).

(b) If |f | ∈ R∗(In), then f ∈ R∗(In) and f , |f | ∈ L(In).

If either (a) or (b) is true, both the Lebesgue and gauge intergals integrate f and |f |

over In to the same value.

P r o o f. Part (a): Since the hypothesis implies that f ∈ L(In) [13], [14], then

f, |f | ∈ R∗(In) by Proposistion 2.11.

Part (b): By Theorem 3.7, since |f | is non-negative, then |f | ∈ L(In) and conse-

quently f ∈ L(In) which in turn implies that f ∈ R∗(In) by Proposition 2.11.

Note that if either (a) or (b) is true, it follows that
∫

In |f | dµ = (G)
∫

In |f | dV and
∫

In f dµ = (G)
∫

In f dV by Proposition 2.11 since f, |f | ∈ L(In). �

Acknowledgments. I would like to thank Dr.D.Bugajewski and Dr.Xiao-Xiong

Gan for their suggestions and for giving me the opportunity to present these results

in the context of a seminar which stimulated discussions about this topic.

References

[1] R.Bartle: Return to the Riemann integral. Am. Math. Mon. 103 (1996), 625–632.
[2] D.Bugajewska: On the equation of nth order and the Denjoy integral. Nonlinear Anal.
34 (1998), 1111–1115.

[3] D.Bugajewska and D.Bugajewski: On nonlinear integral equations and nonabsolute con-
vergent integrals. Dyn. Syst. Appl. 14 (2005), 135–148.

[4] D.Bugajewski and S. Szufla: On the Aronszajn property for differential equations and
the Denjoy integral. Ann. Soc. Math. 35 (1995), 61–69.

[5] T.Chew and F.Flordeliza: On x′ = f(t, x) and Henstock-Kurzweil integrals. Differ.
Integral Equ. 4 (1991), 861–868.

[6] R.Henstock: Definitions of Riemann type of the variational integral. Proc. Lond. Math.
Soc. 11 (1961), 404–418.

[7] R.Henstock: The General Theory of Integration. Oxford Math. Monogr., Clarendon
Press, Oxford, 1991.

[8] J.Kurzweil: Generalized Ordinary Differential Equations and Continuous Dependence
on a Parameter. Czech. Math. J. 7 (1957), 418–449.

[9] R.McLeod: The Generalized Riemann Integral. Carus Math. Monogr., no. 20, Mathe-
matical Association of America, Washington, 1980.

[10] J.Munkres: Analysis on Manifolds. Addison-Wesley Publishing Company, Redwood
City, CA, 1991.

632



[11] W.Pfeffer: The divergence theorem. Trans. Am. Math. Soc. 295 (1986), 665–685.
[12] W.Pfeffer: The multidimensional fundamental theorem of calculus. J. Austral. Math.

Soc. (Ser. A) 43 (1987), 143–170.
[13] W.Rudin: Principles of Mathematical Analysis. Third Ed., McGraw-Hill, New York,

1976.
[14] W.Rudin: Real and Complex Analysis. McGraw-Hill, New York, 1987.
[15] Š. Schwabik: The Perron integral in ordinary differential equations. Differ. Integral Equ.

6 (1993), 863–882.
[16] M.Spivak: Calculus on Manifolds. W.A.Benjamin, Menlo Park, CA, 1965.
[17] K.Stromberg: An Introduction to Classical Real Analysis. Waldworth, Inc, 1981.

Author’s address: T im o t h y My e r s, Department of Mathematics, Howard Univer-
sity, Washington DC 20059, e-mail: timyers@howard.edu.

633


		webmaster@dml.cz
	2020-07-03T18:47:35+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




