[1] Banach, S.:
Théorie des opérations linéaires. Hafner New York (1932).
Zbl 0005.20901
[3] Fávaro, V. V.:
The Fourier-Borel transform between spaces of entire functions of a given type and order. Port. Math. 65 (2008), 285-309.
DOI 10.4171/PM/1813 |
MR 2428422
[4] Fávaro, V. V.: Convolution equations on spaces of quasi-nuclear functions of a given type and order. Preprint.
[5] Floret, K.:
Natural norms on symmetric tensor products of normed spaces. Note Mat. 17 (1997), 153-188.
MR 1749787 |
Zbl 0961.46013
[6] Gupta, C.: Convolution Operators and Holomorphic Mappings on a Banach Space. Séminaire d'Analyse Moderne, 2. Université de Sherbrooke Sherbrooke (1969).
[7] Horváth, J.:
Topological Vector Spaces and Distribuitions. Addison-Wesley Reading (1966).
MR 0205028
[8] Malgrange, B.:
Existence et approximation des équations aux dérivées partielles et des équations des convolutions. Annales de l'Institute Fourier (Grenoble) VI (1955/56), 271-355.
MR 0086990
[10] Matos, M. C.:
On the Fourier-Borel transformation and spaces of entire functions in a normed space. In: Functional Analysis, Holomorphy and Approximation Theory II. North-Holland Math. Studies. G. I. Zapata North-Holland Amsterdam (1984), 139-170.
DOI 10.1016/S0304-0208(08)70827-2 |
MR 0771327 |
Zbl 0568.46036
[11] Matos, M. C.:
On convolution operators in spaces of entire functions of a given type and order. In: Complex Analysis, Functional Analysis and Approximation Theory J. Mujica North-Holland Math. Studies Vol. 125 North-Holland Amsterdam (1986), 129-171.
DOI 10.1016/S0304-0208(08)72168-6 |
MR 0893415 |
Zbl 0658.46016
[13] Mujica, X.: Aplicações $\tau(p;q)$-somantes e $\sigma(p)$-nucleares. Thesis Universidade Estadual de Campinas (2006).
[15] Pietsch, A.:
Ideals of multilinear functionals. In: Proc. 2nd Int. Conf. Operator Algebras, Ideals and Their Applications in Theoretical Physics, Leipzin 1983 Teubner Leipzig (1984), 185-199.
MR 0763541 |
Zbl 0562.47037
[16] Pietsch, A.:
Ideals of multilinear functionals. In: Proc. 2nd Int. Conf. Operator Algebras, Ideals and Their Applications in Theoretical Physics, Leipzin 1983 Teubner Leipzig (1984), 185-199.
MR 0763541 |
Zbl 0562.47037