Article
Keywords:
exponent; digraph; primitivity
Summary:
We consider the primitive two-colored digraphs whose uncolored digraph has $n+s$ vertices and consists of one $n$-cycle and one $(n-3)$-cycle. We give bounds on the exponents and characterizations of extremal two-colored digraphs.
References:
[1] Olesky, D. D., Shader, B. L., Driessche, P. van den:
Exponents of tuples of nonnegative matrices. Linear Algebra Appl. 356 (2002), 123-134.
MR 1944682
[2] Shader, B. L., Suwilo, S.:
Exponents of nonnegative matrix pairs. Linear Algebra Appl. 363 (2003), 275-293.
MR 1969073 |
Zbl 1019.15013
[3] Beasley, L. B., Kirkland, S.:
A note on $k$-primitive directed graphs. Linear Algebra Appl. 373 (2003), 67-74.
MR 2022278 |
Zbl 1026.05037
[4] Gao, Yubin, Shao, Yanling:
Exponents of two-colored digraphs with two cycles. Linear Algebra Appl. 407 (2005), 263-276.
MR 2161931 |
Zbl 1073.05041
[5] Shao, Yanling, Gao, Yubin, Sun, Liang:
Exponents of a class of two-colored digraphs. Linear and Multilinear Algebra. 53 (2005), 175-188.
MR 2150784 |
Zbl 1065.05042