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Abstract. We consider the primitive two-colored digraphs whose uncolored digraph has
n + s vertices and consists of one n-cycle and one (n — 3)-cycle. We give bounds on the
exponents and characterizations of extremal two-colored digraphs.
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1. INTRODUCTION

A two-colored digraph is a digraph whose arcs are colored red or blue. We allow
loops and both a red arc and a blue arc from i to j. Let D be a two-colored digraph.
D is strongly connected if for each pair (i, 7) of vertices there is a walk in D from i
to j. Given a walk w in D, let r(w) and b(w), denote the number of red and blue
arcs, respectively, of w. We call w an (r(w), b(w))-walk, and define the composition

r(w)
b(w) |
A two-colored digraph D is primitive if there exist nonnegative integers h and k

with h + k > 0 such that for each pair (i, j) of vertices there exists an (h, k)-walk in
D from i to j. The exponent exp(D) is the minimum value of h + k taken over all

of w to be the vector (r(w),b(w)) or

pairs (h, k) such that for each pair (7, j) of vertices there exists an (h, k)-walk from
i't0 J (2).

Research supported by NNSF of China (No. 10571163) and NSF of Shanxi (Nos.
2007011017, 2008011009).
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Let D be a two-colored digraph and let C = {vy1,72,...,v} be the set of cycles
of D. Set M to be the 2 x [ matrix whose ith column is the composition of ~;,
i = 1,2,...,1. We call M the cycle matriz of D. The content of M, denoted
content(M), is defined to be 0 if the rank of M is less than 2, and the greatest
common divisor of the determinants of the 2 x 2 submatrices of M, otherwise.

There is a natural correspondence between two-colored digraphs and nonnegative
matrix pairs ([2]). The concept of the exponent of a nonnegative matrix pair arises
naturally in the study of finite Markov chains, and some results have already been
obtained ([1], [2], [3], [4], [5])-

Lemma 1.1 ([2]). Let D be a two-colored digraph. Then D is primitive if and
only if D is strongly connected and content(M) = 1.

We consider the two-colored digraphs that have at least one red arc and one blue
arc, and whose uncolored digraph is the digraph as given in Fig. 1, where s > 0,
m>=s+1landn>m+1.

Fig. 1. Digraph D
Clearly, D has only two cycles. One is an n-cycle and the other is an (n—m+s+1)-

cycle. Without loss of generality we may assume that the cycle matrix of D is

a b

M:
n—a n—m+s+1-—2>

for some integers a and b with n/2 < a < n.
Theorem 1.2 ([4]). Let D be a two-colored digraph as given in Fig. 1 and let

m = s+ 1+t Then D is primitive if and only if t > 1, (at + 1)/n or (at — 1)/n is
integer, and b=a — (at + 1)/n or b =a — (at — 1) /n.
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Theorem 1.3. Let D be a two-colored digraph as given in Fig. 1 and let
m = s+ 1+t If D is primitive, then gcd{t,n} = 1.

Proof. Note that

a b a b a b—a
n—a n—t—>b n n—t n -t
Since |M| = %1, we have ged{t,n} = 1. O

Theorem 1.4. Let D be a two-colored digraph as given in Fig. 1 and let m =
s+ 1+t. Then D is primitive if and only if |a(n — t) — bn| = 1.

Proof. Since |[M| = a(n —t) — bn, the theorem follows from Lemma 1.1. O

Theorem 1.5. Let D be a two-colored digraph as given in Fig. 1 and let m = s+4.
Then D is primitive if and only if
(1) n=3¢+1,a=2q+1, and b=2qg—1; or
(2) n=3¢+2,a=2g+ 1, and b=2q — 1.

Proof. By Theorem 1.3 we have 31n. So let n =3¢+ 1 or n = 3¢ + 2, where
q=2.

When n = 3¢+ 1, then by Theorem 1.2, (3a+1)/(3¢+ 1) or (3a —1)/(3¢+1) is
integer. Noting that n/2 < a < n, we have a = 2¢g 4+ 1 and b = 2¢ — 1. So the cycle
matrix of D is

2+1 2¢—1
M—{‘” 4 }

q q—1
When n = 3¢ + 2, then by Theorem 1.2, (3a+1)/(3¢+2) or (3a —1)/(3¢+2) is
integer. Noting that n/2 < a < n, we have a = 2¢ 4+ 1 and b = 2¢ — 1. So the cycle

matrix of D is ) L o )
VA e i
g+1 q
The theorem follows. (]

Let D be the two-colored digraph D as given in Fig. 1. In [4], we considered D
with m = s+ 2 and gave the set of exponents of families of D. In [5], we considered
D with m = s + 3 and gave the bounds on the exponents and characterizations of
extremal two-colored digraphs. In this paper we consider D with m = s + 4 (that is
t=3),n =9, give bounds on the exponents and characterizations of extremal two-
colored digraphs. Throughout the rest of the paper, we let D,, ; denote the collection
of primitive two-colored digraphs that have at least one red arc and one blue arc,
and whose uncolored digraph is the digraph as given in Fig. 1 with m = s + 4.
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2. THE CASEn =3¢+ 1

Let n =3¢+ 1, and let the cycle matrix of D be

2+1 2¢—1
M:[q+ q }

q q—1
where g > 3. Clearly,

M—lz[l_q 2¢ —1 }

g —2q-1
Theorem 2.1. Let D € D3q11,s. Then
12¢% — 2¢® — 3¢, if s < q—3,
18¢* —12¢—3 < exp(D) < ¢ 12¢° — 2¢® + 1, ifs=q—2,
6¢° +2(3s+T7)¢> —2(2s +5)g—s—2, ifs>q—1.

Proof. First, we show that
exp(D) > 18¢* — 12¢ — 3.

Suppose that (h, k) is a pair of nonnegative integers such that for all pairs (i, j)
of vertices there is an (h, k)-walk from ¢ to j. By considering ¢ = j = n, we see that
there exist nonnegative integers v and v with

=]

Since there are 2q + 1 red arcs and ¢ blue arcs on the n-cycle, there is a red path
w of length 3 on the n-cycle. Taking ¢ and j to be the initial vertex and terminal
vertex of w, respectively, each walk from 7 to j can be decomposed into the path w

w1

and cycles. Hence,

k

has a nonnegative integer solution. Then

s (][ [

So v > 3¢. Finally, take i and j to be the terminal and initial vertices of w, respec-
tively. Then the path from i to j has composition either (2¢ — 2, ¢) or (2¢ —4,q9— 1),
so we have that

o SR IR i)
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has a nonnegative integer solution. Then

e [P

- [ (- [

So u > 3q — 3. Thus

or

h+k=[1 1]M{Z]>[3q+1 3q—2][ =18¢° —12¢ - 3,

3q — 3]
and exp(D) > 18¢% — 12¢ — 3.

Now, we prove the upper bounds for exp(D). Let p;; be the shortest path in D
from vertex i to vertex j, r = r(pi;), and b = b(p;;).

First, we show that exp(D) < 12¢ — 2¢® — 3¢ when s < ¢ — 3.

Note that

en  [p]+ - e vprae o |1

9 2q—1 8¢% — 2q
+ ((2q +1)b—qr +2¢° +q) [ g1 ] = {4q3—2q2—q} .

Consider the following three cases.

Case 1. Both the vertices i and j are on the n-cycle.

Clearly, b < g and r < 2¢+ 1. Thus (¢q—1)r—(2¢—1)b+2¢*>—q > (¢—1)r— (2¢—
1)g+2¢*—q = (¢—1)r = 0 and (2¢+1)b—qr+2¢*+q > (2¢+1)b—q(2¢+1)+2¢°+q =
(2¢+1)b=>0. If (g—1)r—(2¢g—1)b+2¢>—q =0, then b = ¢, » = 0. Since ¢ > s+ 3,
so either i or j is on the (n — 3)-cycle.

Case 2. Both the vertices ¢ and j are on the (n — 3)-cycle.

Clearly, b < ¢—1 and r < 2¢—1. Thus (¢g—1)r—(2¢—1)b+2¢*—q > —(2¢—1)(qg—
1)+2¢>°—q=2¢—1>0and (2¢+1)b—qr+2¢*>+q > —q(2¢—1)+2¢*>+q = 2¢ > 0.

Case 3. The vertex ¢ (or j) is on the path 1 — 2 — ... — s+ 3, and the vertex j
(or i) ison the pathn+1— ... = n+s.

Clearly, the path p;; contains the path s +4 — s+ 5 — ... — n. Let the
number of red arcs and blue arcs in the path s+4 — s+5 — ... = n be x and y,
respectively. Then = + y = 3¢ — s — 3, and the number of red arcs and blue arcs in
Disdg—zr=q+s+y+3and 2¢g—y — 1, respectively. Since s < g — 3, we see that

2q — 3q—s—y—3<r<qgt+st+y+3<2+ty,
b<2¢—1—y.
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Thus (¢—1)r— (2 - 1)b+2¢> —q = (¢—1)(2¢—y) — (2¢—1)(2¢—1—y) +2¢* —q =
yg+q—1>0, 2¢+1)b—qr+2¢*+q > (2¢+1)y—q(2¢+y)+2¢*+q = yg+y+q > 0.

By virtue of (2.1), the walk that starts at vertex i, follows p;; to vertex j, and
along the way goes around the n-cycle (¢ —1)r — (2¢ — 1)b+2¢* — ¢ times and around
the (n — 3)-cycle (2¢ + 1)b — qr + 2¢° + q times is an (8¢® — 2q,4¢> — 2¢° — ¢q)-walk
from i to j. So exp(D) < 12¢® — 2¢®> — 3¢ when s < g — 3.

Secondly, we show that exp(D) < 12¢® — 2¢®> + 1 when s = ¢ — 2.

Note that

(2.2) m +(lg=1)r=Qg=1)b+2¢" —q+1) {2(;;1]

3
F((2q+ Db —qr+2¢°+q) {Qqq_ ” = [423 _+2(1]2] .

Similarly to the above, we can show that the walk that starts at vertex ¢, follows p;;
to vertex j, and along the way goes around the n-cycle (¢—1)r—(2¢—1)b+2¢*>—q+1
times and around the (n—3)-cycle (2¢+1)b—qr+2¢*+q times is an (8¢>+1, 4¢>—2¢?)-
walk from i to j. So exp(D) < 12¢® — 2¢*> + 1 when s = ¢ — 2.

Finally, we show that exp(D) < 6¢3+2(3s+7)q*>—2(2s+5)g—s—2 when s > ¢—1.

Note that

(2.3) m +((g—Dr—(2q—1b+¢*+2¢+s¢—s—2) {2‘”1}

q
2 — 1
+((2q+1)b—qr+q2+sq+3q)[qq_l}

B [4(]3 +2(25+5)¢% — (25 +5)g — s — 2}
N 2¢3 4+ 2(s+2)¢* — (25 + 5)q

Consider the following three cases.

Case 1. Both the vertices i and j are on the n-cycle.

Clearly, b < gand r < 2¢+ 1. Thus (¢ — 1)r — (2¢— 1)b+¢*>+2¢+sqg—s—2>
—(2¢—1)g+¢®+2¢+(q—1)?>-2=g—1>0and (2¢+ 1)b—qr+ ¢> + sq+3q >
—q2¢+ 1)+ ¢+ (¢—1)g+3¢=q>0.

Case 2. Both the vertices ¢ and j are on the (n — 3)-cycle.

Clearly, b < g—1and r < 2¢—1. Thus (¢—1)r— (2¢—1)b+¢*>+2q+sqg—s—2 >
—(2¢—1)(q—=1)+¢*+2¢+(q—1)>~2=3¢—2>0and (2¢+1)b—qr+¢*+sq+3q >
—q2¢—1)+¢*+ (¢ —1)g+3¢ =3¢ > 0.

Case 3. The vertex ¢ (or j) is on the path 1 — 2 — ... — s+ 3, and the vertex j
(or i) ison the pathn+1— ... = n+s.

Clearly, the path p;; contains the path s4+4 — s4+5 — ... — n. Let the number of
red arcs and blue arcs in the path s+4 — s+5 — ... — n be z and y, respectively.
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Then  +y = 3¢ — s — 3, and the numbers of red arcs and blue arcs in D are
4g—x=q+s+y+3and 2¢g — y — 1, respectively. We see that

qg+s+y+3,

3g—s—vy r <
b<2¢—1-—y.

-3<
Y <

Thus (¢ —1)r — (2 — Db+ ¢*> +2q+sq—5—-2> (q—1)(3¢—s—y—3) — (2¢ — 1) x
2¢—1—-y)+¢*+2¢+s¢g—s—2=yq>0,and (2¢+ 1)b—qr +¢> +sq+3q >
2+ 1)y —qlg+s+y+3)+¢*+s¢+3¢=ylg+1) >0.

By virtue of (2.3), the walk that starts at vertex 4, follows p;; to vertex j and
along the way goes around the n-cycle (¢ — 1)r — (2¢ — 1)b+ ¢*> + 2q + sq — s — 2
times and around the (n — 3)-cycle (2¢ + 1)b — qr + ¢ + sq + 3¢ times is a (4¢> +
2(25 +5)¢® — (25 +5)g — s — 2,2¢> + 2(s + 2)¢® — (25 + 5)g)-walk from i to j. So
exp(D) < 6¢® +2(35+7)¢*> — 2(2s+ 5)g — s — 2 when s > ¢ — 1.

The theorem now follows. O

3. EXTREMAL TWO-COLORED DIGRAPHS FOR THE CASE n = 3¢ + 1

In this section we give characterizations of extremal two-colored digraphs for the
case n = 3¢ + 1. The main results are Theorems 3.4, 3.6, 3.7 and 3.11.

If the arcs in a walk w of length ¢ are all red (blue), then we say that these arcs
are t consecutive red (blue) arcs, or w is t consecutive red (blue) arcs. Since there
are 2q + 1 red arcs and ¢ blue arcs on the n-cycle, the n-cycle has at least one 3
consecutive red arcs. Similarly, the (n — 3)-cycle has at least one 3 consecutive red

arcs.

Lemma 3.1. Let D € Dsgy1,,. If D has a 3 consecutive red arcs in the path
n—2—-n—1—-n—-1—... > s+6, then

exp(D) > 18¢* — 12¢ — 3.

Proof. Leta—a+1,a+1—a+2,a+2— a+ 3 be a3 consecutive red arcs
in the pathn —2 —>n—-1—-n—>1— ... — s+ 6. Suppose that (h, k) is a pair
of nonnegative integers such that for all pairs (i, j) of vertices there is an (h, k)-walk
from i to j. Considering ¢ = j = n, we see that there exist nonnegative integers u

=]

and v with
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Taking ¢ and j to be a and a + 3, respectively, there is a unique path from i to j,
and each walk from ¢ to j can be decomposed into the path from 4 to j and cycles.
Hence

o'y

k

has a nonnegative integer solution. Necessarily

o [ e - [

So v > 3¢q. Next, take i and j to be a + 3 and a, respectively. Since there is a unique
path from 4 to j, and this path has composition (2¢ — 2, ¢), hence

h—(2q—2)}

M:
Z[k—q

has a nonnegative integer solution. Necessarily

s [ [ [ [

So u > 3q — 2. Thus

htk=[1 1]M[:

3q— 2
}2[3(]4—1 3q—2][q3 }:18q2—9q—2,
q
and exp(D) > 18¢® — 9¢ — 2 > 18¢% — 12¢ — 3. O

Lemma 3.2. Let D € Ds3q41,. If D has a 2 consecutive blue arcs or has a
blue-red-blue path of length 3, then

exp(D) > 18¢% — 12¢ — 3.

Proof. If D has a 2 consecutive blue arcs, we can prove that u > 4¢ — 2 and
v > 4q + 2 similarly to the proof of Lemma 3.1. So

4q —2
exp(D) > [3¢+ 1 3q—2][ a ]:24q2—4q—6>18q2—12q—3.

4q+ 2
If D has a blue-red-blue path of length 3, we can prove that v > 3¢ — 1 and
v 2 3q + 2 similarly to the proof of Lemma 3.1. So

3qg—1

exp(D) > [3¢+1 3¢—2] [3q+2

] =18¢% — 5> 18¢® — 12¢ — 3.
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Lemma 3.3. Let D € D34y 5. If D has exactly one 3 consecutive red arcs, and
the remaining arcs of D alternate between one blue arc and two red arcs, then

exp(D) = 18¢% — 12¢ — 3.

Proof. We only need to show that exp(D) < 18¢* — 12¢q — 3.

Let w be the 3 consecutive red arcs. It is clear that w must be in the path
s+4—s5+5—... > n.

Let (¢,7) be a pair of vertices and let p;; be the shortest path from ¢ to j. Denote
r =r(p;;) and b = b(p;;). We see that

(3.1) {Z]+((q—1)r—(2q—1)b+3q_3)[2‘1;1}
el ]

Note that » < 2(b+ 1)+ 1 and 2(b — 1) < r when b > 1. Consider the following
three cases.

Case 1. Both the vertices i and j are on the (n — 3)-cycle.

If b=0,r =3, then (2¢+ 1)b — gr + 3¢ = 0, and both ¢ and j are on the n-cycle.
Ifo=0,r<2 then (2¢+1)b—gr+3¢g>0.1Ifb>1,sincer <2(b+1)+ 1, we see
that (2¢+1)b—qr+3¢> (2¢+1)b—q(20+3)+3¢=0b> 0.

If b =0, then (¢—1)r—(2¢—1)b+3¢—3 > 0. If b > 1, noting that r > 2(b—1), we
obtain (¢—1)r—(2¢—1)b+3¢—3>2(¢—1)(b—1)—(2¢—1)b+3¢—3=q—b—1 > 0.

Case 2. Both the vertices i and j are on the n-cycle and either i or j is not on the
(n — 3)-cycle.

Clearly, r < 2¢g+1and b<¢q. f0O<b< ¢g—2, then (¢—1)r—(2¢—1)b+3¢—3 >
2-1Db-1)—-(2¢—1)b+3¢g—3=q—b—-1>0. Ifb=qg— 1, r > 2g — 4, then
(g—Dr—(2¢—1)b+3¢—3> (¢—1)(2¢—4)—(2¢—1)(¢—1)+3¢—3=0. Ifb=¢—1,
r =2¢—4, then (¢—1)r — (2¢—1)b+3¢—3 = 0 and p,;; must contain a vertex which
is on the (n — 3)-cycle. If b = ¢, and either i or j is not on the (n — 3)-cycle, then
r > 2g—1and (¢—1)r—(2¢—1)b+3¢—3 > (¢—1)(2¢—1)—(2¢—1)qg+3¢—3 = ¢—2 > 0.

Noticing that r < 2(b+1) + 1, we see that (2¢+1)b—qr+3q > (2¢+1)b—q(2b+
3)+3¢g=0b>0.

Case 3. The vertex ¢ (or j) is on the path 1 — 2 — ... — s+ 3, and the vertex j
(ori)ison the pathn+1— ... 5 n+s.

Clearly, the path p;; contains the path s +4 — s+ 5 — ... — n. Let the
number of red arcs and blue arcs in the path s+4 — s+5 — ... — n be z and v,
respectively. Then = + y = 3¢ — s — 3, and the number of red arcs and blue arcs in
Dis4q—x=q+s+y+ 3 and 2¢ — y — 1, respectively.
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Ifb < 1, then (¢g—1)r—(2¢—1)b+3¢—3 = (¢—1)r+¢—2 > 0. If b > 2, noting that
r > 2(b—1)+1, we obtain (¢—1)r—(2¢—1)b+3¢—3 > (¢—1)(2b—1)—(2¢—1)b+3¢—3 =
2q —b—2. When y = 0, since D has exactly one 3 consecutive red arcs, then n — 1,
n—-n+1l,s+3—s+4andn+s— s+4areblue. Sob<2q—1—-y—2=2¢—3
and (¢—1)r—(2¢—1)b+3¢g—3>0. Wheny > 1, then b<2¢—1—y < 2¢—2 and
(q=1)r—(2¢—1)b+3¢—3=0.

Noticing that » < 2(b+ 1) + 1, we see that (2¢ + 1)b — gr + 3¢ > (2¢ + 1)b —
q(2b+3)+3¢=0b>0.

By virtue of (3.1), the walk that starts at vertex ¢, follows p;; to vertex j, and
along the way goes around the n-cycle (¢ — 1)r — (2g — 1)b+ 3¢ — 3 times and around
the (n — 3)-cycle (2q + 1)b — gr + 3¢ times is a (12¢® — 6¢ — 3,6¢° — 6¢)-walk from i
to j. So exp(D) < 18¢® — 12q — 3. O

Lemmas 3.1, 3.2, 3.3 yield the following theorem.

Theorem 3.4. Let D € Dsyq1,5. Then exp(D) = 18¢® — 12q — 3 if and only
if D has exactly one 3 consecutive red arcs, and the remaining arcs of D alternate
between one blue arc and two red arcs.

Now, we characterize the extremal digraphs in D3, s whose exponents attain
the upper bounds.

Lemma 3.5. Let D € Dsgy1,s with s < g—2. If 2¢ + 1 red arcs on the n-cycle

are not consecutive, then

exp(D) < 12¢° — 2¢* — 3q.

Proof. Let (i,7) be a pair of vertices and let p;; be the shortest path from %
to j. Denote r = r(p;;) and b = b(p;;). We see that

(3.2) {Z]+((q—1)r—(2q—1)b+2q2—q)[2(];-1}

2g—1
+((2q+1)b—qr+2q2+q—1)[q ]—

8¢ —4q+1
q—1 4

@ —2¢2—2¢+1]|"

Consider the following three cases.

Case 1. Both the vertices 7 and j are on the n-cycle.

Clearly, b < gand r <2¢+1. If b< g —1, then (¢ — 1)r — (2¢ — 1)b+2¢> —q >
(q—D)r—(2¢—1)(g—1)+2¢* —q=(¢q—1)r+2g—1> 0. If b = ¢, since the ¢ blue
arcs on the n-cycle are not consecutive, r > 1 and (¢ — 1)r — (2¢ — 1)b+2¢® —q >
(¢—1)—(2¢-1)¢+2¢° —g=q—1>0.
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If r=2¢+1,then b >1and 2¢+1)b—qr+2¢*>+q—1> (2¢+1) — q(2¢ +
1) +2¢> +q—1=2q > 0. Otherwise r < 2¢g and (2¢+ 1)b —qr +2¢> +q—1 >
2¢+1)b—2¢*>+2¢>+q—1=(2¢+1)b+q—1>0.

Case 2. Both the vertices i and j are on the (n — 3)-cycle.

Clearly, b < g—1and r < 2¢—1. So (g—1)r—(2¢—1)b+2¢*>—q > —(2¢—1)(¢—1)+
2¢°—q=2q—1>0and (2¢+1)b—qr+2¢°+q—1 > (2¢+1)b—q(2q—1)+2¢*+q—1 =
(2¢+1)b+2¢—1>0.

Case 3. The vertex ¢ (or j) is on the path 1 — 2 — ... — s+ 3, and the vertex j
(or i) ison the pathn+1— ... = n+s.

Clearly, the path p;; contains the path s4+4 — s4+5 — ... — n. Let the number of
red arcs and blue arcs in the path s +4 — s+5 — ... — n be x and y, respectively.
Then ¢ +y =3¢ — s — 3, and

Thus (¢—1)r—(2¢—1)b+2¢° —q > (¢—1)(2¢—y—1)— (29— 1)(2¢—1-y) +2¢° —q =
qy > 0, and (2¢+1)b—qr+2¢*>+q—1 > (2¢+1)y—q(2¢+1+y)+2¢*+q—1 = qy+y—1.
If y >0, then (2¢+1)b—qr+2¢*> +q—1>qy+y—1>0.If y =0, r < 2q, then
¢+1b—qr+2¢?+q—1>qg—1>0Ify=07r=2¢+1, then b > 1 and
(2¢+1)b—qr+2¢>+q—1>22¢+1—q(2¢+1)+2¢*> +q—1=2¢>0.

By virtue of (3.2), the walk that starts at vertex ¢, follows p;; to vertex j, and
along the way goes around the n-cycle (¢ —1)r — (2¢ — 1)b+2¢* — ¢ times and around
the (n—3)-cycle (2g+1)b—qr+2q¢?+q—1 times is a (8¢ —4q+1,4¢> —2¢*> — 2q+1)-
walk from i to j. So exp(D) < 12¢® — 2¢® — 6q + 2 < 12¢° — 2¢* — 3q. O

Theorem 3.6. Let D € Ds3,1 5 with s < ¢ — 3. Then exp(D) = 12¢° — 2¢® — 3¢
if and only if 2q 4+ 1 red arcs on the n-cycle are consecutive.

Proof.  We only need to show that if 2¢ + 1 red arcs on the n-cycle are
consecutive, then exp(D) > 12¢3 — 2¢* — 3q.

Suppose that (h, k) is a pair of nonnegative integers such that for all pairs (i, j) of
vertices there is an (h, k)-walk from i to j. Considering i = j = n, we see that there
exist nonnegative integers v and v with

h U
=M .
[’f] [U}
Since there are 2¢ + 1 consecutive red arcs on the n-cycle, the remaining ¢ arcs of

the n-cycle are consecutive blue arcs. Taking ¢ and j to be the initial vertex and the
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terminal vertex of 2¢ + 1 consecutive red arcs on the n-cycle, respectively, there is a
unique path from ¢ to j, and this path has composition (2¢ + 1,0). Hence

[h—(2q+1)}

M:
* k

has a nonnegative integer solution. Necessarily

o [ e (- [

So v > 2¢? + q. Next, taking i and j to be the initial vertex and the terminal vertex
of g consecutive blue arcs on the n-cycle, respectively, there is a unique path from 4
to j, and this path has composition (0, ¢). Hence

|t

has a nonnegative integer solution. Necessarily

0 2¢% —
o B] - [q} N [H - [—qu —qq} >0
So u > 2¢%> — ¢q. Thus

2¢ —q

u
h+k=I[1 1|M > 1 -2
Ch=[1 1] H 3¢+1 3¢ 1[2q2+q

] = 12¢° — 2¢* — 3¢,
and exp(D) > 12¢% — 2¢® — 3q. O

Theorem 3.7. Let D € D31, with s = ¢ — 2. Then exp(D) = 12¢® — 2¢® + 1
ifandonly if s+3 —s+4—s+5— ... > n — 1 are red, and the other arcs are
blue.

Proof. Necessity. Let exp(D) = 12¢® — 2¢*> + 1. By Lemma 3.5, 2¢+ 1 red arcs
on the n-cycle are consecutive. Assuming that there is at least one blue arc in the
path s+3 — s+4 — s+5— ... - n — 1, we show that exp(D) < 12¢> — 2¢°® — 3¢.

Let (4,) be a pair of vertices and let p;; be the shortest path in D from ¢ to j.
Denote r = r(p;;) and b = b(p;;). We see that

(3.3) [Z] +((g=1)r— (24— 1)b+2¢* — q) {2(1:1}

2qg —1 8¢% — 2¢
+((2¢+1)b—qr+2¢°>+¢ [ ]:[ .
((2g+1) Moot |7 i =242 g
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Consider the following three cases.

Case 1. Both the vertices 7 and j are on the n-cycle.

Clearly, b < g and r < 2¢+1. Thus (¢—1)r—(2¢—1)b+2¢*—q > (¢—1)r—(2¢—1)q+
2¢°—q=(q—1)r>0and (2¢+1)b—qr+2¢*+q > (2¢+1)b—q(2q+1)+2¢*+q =
(2¢+1)b > 0. If (¢—1)r — (2¢—1)b+2¢*> — ¢ = 0, then r = 0, b = g and p;; contains
the vertex which is on the (n — 3)-cycle.

Case 2. Both the vertices ¢ and j are on the (n — 3)-cycle.

Clearly, b < g—1and r < 2¢—1. Thus (¢—1)r— (2¢—1)b+2¢*—q > —(2¢—1) x
(q—1)+2¢*>—q = 2¢q—1 > 0 and (2¢+1)b—qr+2¢*>+q > —q(2¢—1)+2¢*+q = 2q > 0.

Case 3. The vertex i (or j) is on the path 1 — 2 — ... — s+ 3 and the vertex j
(or i) ison the pathn+1— ... = n+s.

Clearly, the path p;; contains the path s+4 — s4+5 — ... — n. Let the number of
red arcs and blue arcs in the path s +4 — s+5 — ... — n be x and y, respectively.
Then z4+y = 2¢—1, and the number of red arcs and blue arcs in D is 4g—x = 2q+y+1
and 2qg —y — 1, respectively. We see that 2¢—y—1<r < 2¢+y+1landy <b<<2¢—
y—1. Thus (¢—1)r—(2¢—1)b+2¢°—q > (¢—1)(2¢—y—1)—(2¢—1)(2¢—y—1)+2¢*—q =
yq >0, and (2g+1)b—qr+2¢>+q > (2¢+ 1)y —q(2¢+y+1)+2¢> +qg=yg+y > 0.

By virtue of (3.3), the walk that starts at vertex ¢, follows p;; to vertex j, and
along the way goes around the n-cycle (¢ —1)r — (2¢ — 1)b+2¢* — ¢ times and around
the (n — 3)-cycle (2¢ + 1)b — gr + 2¢* + q times is a (8¢® — 2¢,4¢® — 2¢*> — q)-walk
from i to j. So exp(D) < 12¢® — 2¢®> — 3¢ < 12¢® — 2¢* + 1, a contradiction.

Sufficiency. Let s+3 —s+4—s+5— ... > n — 1 be red and the other arcs
be blue. We only need to show that exp(D) > 12¢3 — 2¢* + 1.

Suppose that (h, k) is a pair of nonnegative integers such that for all pairs (¢, j) of
vertices there is an (h, k)-walk from i to j. Considering i = j = n, we see that there
exist nonnegative integers v and v with

h U
=M .
HEdH
Taking ¢ = s + 3 and j = 1, there is a unique path from ¢ to j, and this path has
composition (2¢ + 1,0). Hence

M = {h—(2kq+1)}

has a nonnegative integer solution. Necessarily

oo [ e - [
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So v > 2¢? + q. Next, taking i = 1 and j = s + 3, there is a unique path from i to j,
and this path has composition (0,q). Noting that this path does not contain any
vertex on the (n — 3)-cycle, we infer that each walk of length greater than ¢ from 7 to
j can be decomposed into the path from i to j and z; n-cycles and z2 (n — 3)-cycles,
and z; > 0. This implies that there are integers z; > 0 and zo > 0 such that

wZ]=12)

Necessarily

So u > 2¢* — g+ 1. Thus

u ] 2¢> —q+1 3 9
h+k=[1 1|M >3 1 3q¢g—2 =12q¢° — 2 1,
R e T
and exp(D) > 12¢® — 2¢® + 1. Sufficiency is proved. O

Let the number of red arcs and blue arcs in the path s +4 —s+5— ... — n be
x and y, respectively. Note that t =3¢ —y — s —3 < 3¢ — s — 3. Let r denote the
number of red arcs in D. Thenr =4¢—x > g+ s+ 3, and r = ¢+ s+ 3 if and only
if t =3¢ — s — 3, that is, the arcs s+4 —s+5,s+5—5+6,...,n—1— n must
be red.

Lemma 3.8. Let D € D3q11,5 with s > ¢ — 1, and let D have exactly ¢+ s+ 3
red arcs. If the ¢ + s + 3 red arcs are consecutive, then

exp(D) = 6¢® +2(35 4+ 7)¢* — 2(25 +5)q — 5 — 2.

Proof. We only need to show that exp(D) > 6¢3+2(3s+7)¢>—2(2s+5)g—s—2.

Suppose that (h, k) is a pair of nonnegative integers such that for all pairs (¢, j) of
vertices there is an (h, k)-walk from i to j. Considering i = j = n, we see that there
exist nonnegative integers v and v with

=]

Since D has exactly ¢ + s + 3 red arcs, the arcs s+4 — s+5,s+5—s+6, ...,
n —1 — n are red. This implies that there exist s — g + 4 red arcs in the path
n—1—-2—...—>s+4ands—qg+2redarcsinthepathn - n+1— ... —
n+ s — s + 4, respectively.
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Taking 7 and j to be the initial vertex and the terminal vertex of ¢ + s + 3 con-
secutive red arcs, respectively, then there is a unique path from i to j, and this path
has composition (¢ + s + 3,0). Hence

M= [h—(q+8+3)}

k

has a nonnegative integer solution. Necessarily

=M [h—(q-]:8+3)} _ [ﬂ oy [q+;+3}

B M - [_q2 _ng:(?g);S ' 3)} >0

So v > ¢? + (s + 3)q. Next, taking i and j to be the terminal vertex and the initial
vertex of ¢ + s + 3 consecutive red arcs, respectively, there is a unique path from i
to j, and this path has composition (3¢ — s — 3,2¢ — 1). Hence

My — {h—(3q—s—3)]

k—(2¢q—-1)

has a nonnegative integer solution. Necessarily

e P

kE—(2¢-1) v 2g —1

[u} {q2+(s+2)q—(s+2)}
e — 2 20
v —¢*—(s+3)g+1
Sou>q?>+ (s+2)g— (s+2). Thus

htk=[1 1]MB] > [3¢+1 3¢—2] [q2+(s+2)q—(s+2)}

¢* + (s +3)q
=6¢°+2(3s+7)¢* —2(25+5)g — 5 — 2,
and exp(D) > 6¢° +2(3s+ 7)¢®> — 2(2s + 5)g — s — 2. O

Lemma 3.9. Let D € D3q11,5 with s > ¢ — 1, and let D have exactly ¢+ s + 3
red arcs. If the ¢ + s + 3 red arcs are not consecutive, then

exp(D) < 6¢° +2(3s+ 7)g* — 2(2s + 5)g — s — 2.
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Proof. Let (¢,4) be a pair of vertices and let p;; be the shortest path in D from
i to j. Denote r = r(p;;) and b = b(p;;). We see that

2q—|—1}

(3.4) {Z]+((Q—1)7"—(2q—1)b+q2+2q+sq—s—2){ ¢

20— 1
+((2q+1)b—qr+q2+sq+2q)[qq_l}

B {4(13 +2(2s+4)¢®> — (25 +4)g — s — 2]
N 2¢° + (25 + 3)¢% — (2s + 4)q '

Consider the following three cases.

Case 1. Both the vertices 7 and j are on the n-cycle.

Clearly, b < gand r <2¢+ 1. Thus (¢ — 1)r — (2¢ — 1)b+¢*>+2¢+sqg—s—2>
—(2¢—1)g+¢®+2¢+(q—1)?-2=g—1>0and (2¢+ 1)b—qr+ ¢> + sq+2q >
—q(2¢+1)+¢*+(g—1)g+2¢=0.

Case 2. Both the vertices ¢ and j are on the (n — 3)-cycle.

Clearly, b < g—1and r < 2¢—1. Thus (¢—1)r— (2¢—1)b+¢*>+2q+sqg—s—2 >
—(2¢—1)(qg—=1)+¢*>+2¢+(q—1)>-2=3¢—2>0and (2¢+1)b—qr+q¢>+sq+2q >
—q(2¢— 1)+ ¢*+ (¢ —1)g+2q =2¢ > 0.

Case 3. The vertex ¢ (or j) is on the path 1 — 2 — ... — s+ 3, and the vertex j
(ori)ison the pathn+1— ... 5 n+s.

Clearly, the path p;; contains the path s +4 — s+ 5 — ... — n, and the arcs
s+4—s+5,s+5—>5+6,...,n—1— n must be red. So

Thus (¢—1)r— (2¢—1)b+¢*>+2¢+sqg—5—2> (g—1)(3¢—5—3) — (2¢—1)(2¢—1) +
P +2¢+sg—5—2=0.Ifr <qg+s+2, then (2¢+ 1)b—qr + ¢> + sq+ 2q >
—q(qg+s+2)+¢®+5¢+2¢=0.1fr=q+s+3,then b> 1, and (2¢ + 1)b — gr +
P +sq+29>2¢+1—q(g+s+3)+¢*+s¢+2¢=q+1>0.

By virtue of (3.4), the walk that starts at vertex ¢, follows p;; to vertex j, and
along the way goes around the n-cycle (¢ — 1)r — (2¢ — 1)b+ ¢*> + 2¢ + sq — s — 2
times and around the (n — 3)-cycle (2¢ + 1)b — gr + ¢* + sq + 2q times is a (4q3 +
225 +4)¢? — (2s +4)q — s — 2,2¢> + (25 + 3)¢® — (25 + 4)q)-walk from i to j. So
exp(D) < 6¢%+ (65 +11)¢> —2(25+4)g—s—2 < 6¢° +2(35+7)q> —2(25+5)g — 5 — 2.

(Il
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Lemma 3.10. Let D € D341, with s 2 ¢ — 1 and let there be at least one blue
arc in the path s +4 — s+5 — ... —» n. Then

exp(D) < 6¢° +2(3s+ 7)g* — 2(2s + 5)g — s — 2.

Proof. Let (i,7) be a pair of vertices and let p;; be the shortest path from %
to j. Denote r = r(p;;) and b = b(p;;). Let the number of red arcs and blue arcs
in the path s+4 — s+ 5 — ... — n be x and y, respectively. Then y > 1 and
r <3¢ — s — 4. We see that

(3.5) m +((g—1)r—(2g—1)b+¢* +2¢+ s — s —2) {quﬂ}

+((2g+1)b—qr+¢®+sq+3¢—1) {2;__11]
(43 +22s+5)¢* — (2s+T)g—s—1
B { 2¢° +2(s+2)¢*> — (25 +6)g + 1 ]

Consider the following three cases.

Case 1. Both the vertices 7 and j are on the n-cycle.

Clearly, b < gand r < 2¢+ 1. Thus (¢ — 1)r — (2¢— 1)b+¢*>+2¢+sqg—s—2>
—(2¢—1)g+¢®>+2¢+(q—1)>—2=qg—1>0and (2¢+1)b—qr+¢*+sq+3g—1>
—q2q+ 1)+ +(q—1)g+3¢g—1=qg—1>0.

Case 2. Both the vertices i and j are on the (n — 3)-cycle.

Clearly, b < g—1and r < 2¢—1. Thus (¢—1)r— (2¢—1)b+¢*>+2qg+sqg—s—2 >
—(2¢—1)(g—1)+¢*+2q+(q—1)>—~2 = 3¢g—2 > 0 and (2¢+1)b—qr+q¢*+sq+3¢g—1 >
—q2q—-1)4+ ¢ +(q—1)g+3¢g—1=3¢—1>0.

Case 3. The vertex ¢ (or j) is on the path 1 — 2 — ... — s+ 3, and the vertex j
(or i) ison the pathn+1— ... = n+s.

Clearly, the path p;; contains the path s +4 —s+5— ... = n. So

Thus (¢ — 1)r — (2 —1)b+¢* +2¢+s¢—s5—2 > (g—1)3¢g—5—y —3) —
(2¢—1)(2¢—1—y)+¢*+2q+sq—s—2=1yq > 0and (2g+1)b—qr+q¢*>+sq+3q—1 >
2¢+1)y—qlg+s+y+3)+¢*+s¢g+3¢—1=y(g+1)—1>0.

By virtue of (3.5), the walk that starts at vertex i, follows p;; to vertex j, and
along the way goes around the n-cycle (¢ — 1)r — (2¢ — 1)b+ ¢*> +2¢ + sq — s — 2
times and around the (n — 3)-cycle (2¢ + 1)b — qr + ¢® + sq + 3¢ — 1 times is a
(43 +2(25+5)¢® — (25 +7)q—5—1,2¢> +2(s+2)¢* — (25 +6)q + 1)-walk from i to j.
So exp(D) < 6¢°+2(35+7)¢?> — (4s+13)g—s < 6¢> +2(35+7)¢> —2(25+5)qg— s — 2.

O
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Lemmas 3.8, 3.9, and 3.10 yield the following result.

Theorem 3.11. Let D € D31, with s > q¢ — 1. Then exp(D) = 6¢> + 2(3s +
7)¢*> — 2(2s +5)q — s — 2 if and only if there are exactly ¢+ s + 3 red arcs in D, and
all the red arcs are consecutive.

4. THE CASE n =3¢+ 2

Let n = 3¢ + 2 and let the cycle matrix of D be

[2 1 2¢—1
Mo 24+l 2q }
Lg+1 q
where g > 3. Clearly,
|—¢—1 2¢+1 ]

Theorem 4.1. Let D € D3q12s. Then

12¢% + 14¢* 4+ 2q — 1, if s

18¢* =5 <exp(D) < § .
6¢° +2(35+8)¢®> +2(2s +5)g — (s +3), ifs

Proof. First, we show that exp(D) > 18¢* — 5.

Suppose that (h, k) is a pair of nonnegative integers such that for all pairs (i, j) of
vertices there is an (h, k)-walk from i to j. Considering i = j = n, we see that there
exist nonnegative integers v and v with

h U
=M .
k=
Let the length of the longest red path in D be [. Since there are 2¢ + 1 red arcs
and g + 1 blue arcs on the n-cycle, we see that [ > 2.
Case 1. | = 2.
In this case, there is a blue-red-blue path w of length 3 on the n-cycle. Taking 4

and j to be the initial vertex and terminal vertex of w, respectively, the path from i
to j has composition (1,2). So

h—1
Mz = [k‘—Q]

672



has a nonnegative integer solution. Then

L n _ oyl 1 ] —3q+2 >0
v 2 v 3g+1
So v > 3q+1. Next, let i and j be the terminal and initial vertices of w, respectively.

Then the path from ¢ to j has composition either (2¢,q — 1) or (2¢ — 2,q — 2), so we
have that

MZ:[ h—2q h—(2q—2)}

k—(q—l)} or M= {k—(q—Q)

has a nonnegative integer solution. Then

e )

[ ) [

So u > 3q — 2. Thus

or

U 3qg—2 9
h+k=1[1 1|M > 13 2 3¢g—1 = 18¢° — 5.
+k= ] L] [3¢+2 3¢ ]{3q+1} q

Case 2. 1 > 3.
In this case, there is a red path w of length 3. Taking ¢ and j as the initial vertex

and terminal vertex of w, respectively, the path from ¢ to j has composition (3,0).

So

v ]

has a nonnegative integer solution. Then

Lyt h—3:u_M_13:u_ 3q >0
k v 0 v —3¢—3
So u > 3q. Next, let ¢ and j be the terminal and initial vertices of w, respectively.
Then the path from ¢ to j has composition either (2¢ — 2,q + 1), (2¢ — 4,¢), or

(49 — 3,2q + 1) (this case arises only if s+4=n—1,i=n+1and j =s+3or
t=1and j =n+s ), so we have that

M [k RO
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has a nonnegative integer solution. Then

[ ] [2g — 2] [ ] [— 1

L U -t q _ vl 3q + >0,
LV ] Lg+1 | v ] | 3¢+ 3

P Y e 2qg —4 _ vl —3q >0,
LV ] L g | L v ] |3¢+4

o [ ] [ 4 T [ ] [ 1

z= Y - M1 ¢=3 — Y- —3a+ > 0.

LV ] 12¢+ 1| KA | 3¢+4

So v > 3¢ + 3. Thus

3q

u
=1 1M > 2 3¢-—1
per=it [ >z s0-n[, M

] =18¢%> +12¢ — 3,
and exp(D) > 18¢® — 5.

Next, we show that exp(D) < 12¢3 + 14¢* + 2¢ — 1 when s < ¢ — 2.

Let (4,j) be a pair of vertices and let p;; be the shortest path in D from i to j.
Denote r = r(p;;) and b = b(p;;). We see that

o [Jeocesea 2]

2¢ —1 8¢3 +8¢% —1
+ +1r—2+1b+22+3+1[ }:[ .
((q ) ( q ) q q ) q 4q3+6q2+2q

Consider the following three cases.

Case 1. Both the vertices i and j are on the n-cycle.

Clearly, b< g+ 1land r <2¢+1. If b=0and r = 2¢+ 1, then (2¢ — 1)b — gr +
2¢°+q = —q(2¢q+1)+2¢*+q = 0 and either i or j is on the (n—3)-cycle. Otherwise,
(2¢—1)b—qr+2¢*+q > —q(2q+1)+2¢*+q = 0. For (¢+1)r—(2¢+1)b+2¢>+3q+1,
we have (¢+1)r— (2¢+1)b+2¢*+3q+1 > (¢+1)r— (2¢+1)(g+1)+2¢*+3q+1 =
(g+1)r=>0.

Case 2. Both the vertices ¢ and j are on the (n — 3)-cycle.

Clearly, b < g and r < 2¢—1. Thus (2¢—1)b—qr+2¢*+q > —q(2¢—1)+2¢*>+q =
2¢ > 0and (¢+1)r— (2¢+1)b+2¢*>+3q+1 > —(2¢+1)g+2¢*>+3q+1=2q+1 > 0.

Case 3. The vertex ¢ (or j) is on the path 1 — 2 — ... — s+ 3, and the vertex j
(ori)ison the pathn+1— ... 5 n+s.

Clearly, the path p;; contains the path s +4 — s+ 5 — ... — n. Let the
number of red arcs and blue arcs in the path s+4 — s+5 — ... — n be z and v,
respectively. Then = + y = 3¢ — s — 2, and the number of red arcs and blue arcs in
Disdq—z=qg+s+y+2and 2g —y + 1, respectively. Since s < ¢ — 2, we see that

2q—y<3¢—s—y—2<r<q+s+y+2<2¢+y,
y<b<2¢—y+1.
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Thus (2 —1)b—qr+2¢*+q > (2¢— 1)y —q(2¢+y) +2¢*+q¢ =g+ (¢— 1)y > 0, and
(g+1)r—(2¢+1)b+2¢° +3¢+1 > (¢+1)(29—y) — (2¢+1)(2¢—y+1)+2¢* +3¢+1 =
yq+q > 0.

By virtue of (4.1), the walk that starts at vertex ¢, follows p;; to vertex j, and along
the way goes around the n-cycle (2¢ —1)b— qr +2¢*+ ¢ times and around the (n — 3)-
cycle (g +1)r — (2¢+1)b+2¢? 4+ 3¢+ 1 times is a (8¢> + 8¢ — 1, 4¢3 + 6¢° + 2¢)-walk
from i to j. So exp(D) < 12¢® + 14¢® +2¢ — 1 when s < g — 2.

Finally, we show that exp(D) < 6¢® + 2(3s + 8)¢* + 2(2s + 5)q — (s + 3) when
s=zq—1.

Let (4,) be a pair of vertices and let p;; be the shortest path in D from i to j.
Denote r = r(p;;) and b = b(p;;). We see that
(4.2) [Z] +((2¢ = 1)b— gr + ¢* + 2q + sq) [qujll]

9 2¢—1
+((g+1)r—(2¢+1)b+q¢*+s¢+3¢+s+3) [ . ]

(43 +2(2s+5)¢> + (25 +5)g—s— 3

B [ 2¢° +2(s +3)¢*> + (25 + 5)q ]

Consider the following three cases.

Case 1. Both the vertices 7 and j are on the n-cycle.

Clearly, b< ¢+ 1and r < 2¢+1. Thus (2¢ — 1)b—qr +q¢*> +2q+sq > (2¢—1)b—
q(2q+1)+¢*+2q+(q—1)g = (2¢—1)b > 0 and (q+1)r—(2q+1)b+q*>+sq+3q+s+3 >
(q+Dr=(¢+1)2¢+ 1)+ ¢+ (@-D(g+1)+3¢+3=(¢+1)r+1>0. If
(2¢g—1)b—qr+q¢*+2q+sqg=0,hence b=0,7r=2¢+1, s=q— 1, and either i or
j is on the (n — 3)-cycle.

Case 2. Both the vertices ¢ and j are on the (n — 3)-cycle.

Clearly, b < g and 7 < 2¢ — 1. Thus (2¢ — 1)b—qr +¢*> +2q+sq > —q(2¢ — 1) +
P42+ (q—1)g=2¢>0and (g+1)r—(2¢+1)b+¢>+s¢+3¢+s+3 >
~2¢+1)g+ ¢+ (q—1)(g+1)+3¢+3=2¢+2>0.

Case 3. The vertex i (or j) is on the path 1 — 2 — ... — s+ 3 and the vertex j
(ori)isonthe pathn+1— ... 5 n+s.

Clearly, the path p;; contains the path s +4 — s+ 5 — ... — n. Let the
number of red arcs and blue arcs in the path s+4 — s+5 — ... — n be x and v,
respectively. Then = + y = 3¢ — s — 2, and the number of red arcs and blue arcs in
Disdq—xr=q+ s+ y+ 2 and 2g — y + 1, respectively. We see that

3g—s—y— q+s+y+2,
2

<
<2¢-y+1
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Thus (2¢—1)b—qr+¢*+2q+sq > (2¢—1)y—q(q+s+y+2)+¢*+2q+sq = y(g—1) > 0,
and (¢+1)r— (2¢+1)b+¢*+s¢+3q¢+s+3>(q+1)B¢g—s—y—2)— (2¢+1) x
2¢q—y+1)+q¢®>+s¢+3¢g+s+3=yqg=>0.

By virtue of (4.2), the walk that starts at vertex i, follows p;; to vertex j, and
along the way goes around the n-cycle (2¢ — 1)b — qr + ¢*> + 2q + sq times and
around the (n — 3)-cycle (¢ + 1)r — (2¢ + 1)b + ¢* + sq + 3¢ + s + 3 times is a
(4¢® +2(25 +5)¢% + (25 +5)qg — s — 3,2¢> + 2(s + 3)¢® + (25 + 5)q)-walk from i to j.
So exp(D) < 6¢ +2(3s + 8)¢? +2(25 + 5)qg — (s + 3) when s > ¢ — 1.

The theorem follows. O

5. EXTREMAL TWO-COLORED DIGRAPHS FOR THE CASE n = 3¢ + 2

In this section we give characterizations of extremal two-colored digraphs for the
case n = 3¢ + 2. The main results are Theorems 5.4, 5.6 and 5.10.

Lemma 5.1. Let D € Dsgy2 . If the length of the longest red path in D is
greater than or equal to 3, then

exp(D) > 18¢* — 5.

Proof. From the proof of Theorem 4.1, it is clear. O

Lemma 5.2. Let D € D3qy2 . If the length of the longest red path in D is 2 and
there is a blue-red-blue path w in the pathn —2 —-n—-1—-n—>1— ... > s+ 6,
then

exp(D) > 18¢* — 5.

Proof. Suppose that (h,k) is a pair of nonnegative integers such that for all
pairs (i, j) of vertices there is an (h, k)-walk from ¢ to j. Considering i = j = n, we
see that there exist nonnegative integers u and v with

=)

Taking ¢ and j to be the initial vertex and terminal vertex of w, respectively, then
the path from i to j has composition (1,2). So we have that

h—1
Mz = [k‘—Q]
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has a nonnegative integer solution. Then

L n _ oyt 1 ] —3q+2 > 0.
v 2 v 3g+1
So v > 3q+1. Next, let i and j be the terminal and initial vertices of w, respectively.
Then the path from i to j has composition (2¢,q — 1), so we have that

MZ_{ h_zq)]

has a nonnegative integer solution. Then

P D 2q v 3¢—1 >0
v q—1 v —3q—-1
So u > 3q — 1. Thus

3¢ -1
h+k=][1 1]M{Z]>[3q+2 3q—1][ 1 ]:18q2+3q—3>18q2—5.

3g+1

This implies the lemma. O

Lemma 5.3. Let D € D340 ,. If the length of the longest red path in D is 2,
and there is a blue-red-blue path w in the path s +4 — s+ 5 — ... — n, then

exp(D) = 18¢* — 5.

Proof. We only need to show that
exp(D) < 18¢* — 5.

Let (4, 7) be a pair of vertices and let p;; be the shortest path from i to j. Denote
r =1(pij), b =b(p;j). We see that

0 [t mwesafi!

Noting that r < 2(b+1) =2b+2and r > 2(b—1) — 1 = 2b— 3 when b > 2, we have
b < %(r+3). When r =0, then b < 1, and (¢+1)r—(2¢+1)b+3g+1 > g > 0. When
r > 1, then (¢+1)r—(2¢+1)b+3¢+1 > (¢+1)r—(2¢+1) 3 (r+3)+3¢+1 = 1(r—1) > 0,
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and if (¢+ 1)r — (2¢+1)b+ 3¢+ 1 =0 then r = 1 and b = 2. This implies that p;;
is the path w, and both ¢ and j are on the n-cycle.

Now we prove that (2¢ —1)b—qr +3¢—2>0and if (2¢—1)b—qgr+3¢—2=0
then p;; must contain a vertex which is on the (n — 3)-cycle.

Case 1. Both the vertices ¢ and j are on the (n — 3)-cycle.

Clearly, b < < 2¢—1,and r < 2b+2. If r < 2b+1, then (2g—1)b—qgr+3¢—2 >
(2q—1)b—q(2b+1)+3q—2—2q—2—b/2q—2—q:q—2/0. If r=2b+2,
noticing that » < 2¢g — 1, we infer that b < ¢ —2 and (2¢ — 1)b —qr + 3¢ — 2 =
(2¢—1)b—q(2b+2)+3¢—2=qg—2-0>0.

Case 2. Both the vertices ¢ and j are on the n-cycle, and either i or j is not on
the (n — 3)-cycle.

Clearly b < ¢+ 1 and r < 20+ 2. If r < 2b, then (2¢ — )b —gr + 3¢ —2 >
(2¢—1)b—2¢b+3¢—2=3¢g—2-b>3q—2—(g+1) > 0. If r = 2b+ 1, noticing that
r <2¢+1, we infer that b< gand (2¢g—1)b—qgr+3¢—2=2q—b—-2>qg—2>0.
If r = 2b+ 2, noticing r < 2¢g+ 1, then b < ¢g—1. If b < ¢—3,r = 2b+ 2,
then (2¢ — 1)b—qr+3¢—2=(2¢—1)b—q(204+2)+3¢—2=qg—-b—2>0. If
b=q—2,7=2b+2 = 2q— 2, since the length of the longest red path in D is 2 and
there is a blue-red-blue path in s +4 — s+ 5 — ... — n, so in this case we have
(2¢—1)b—qr+3¢—2=(2¢g—1)b—q(2b+2)+3¢—2=¢qg—b—2 =0 and either i or
j is on the (n — 3)-cycle. If b= ¢ —1, r = 2b+ 2 = 2q, then ¢ and j are the terminal
and initial vertices of w, respectively, and both ¢ and j are on the (n — 3)-cycle, so
this is not the case.

Case 3. The vertex i (or j) is on the path 1 — 2 — ... — s+ 3 and the vertex j
(or i) ison the pathn+1— ... = n+s.

Clearly, the path p;; contains the path s+4 — s+5 — ... — n. Sor < 2(b+1)—1
2b+ 1. Let the number of blue arcs in the path s+4 — s+5 — ... — n be y. Then
2<y<b<2q—y+1.fb=2g—y+1,thenn—1,n—-n+1,s+3 —s+4and
n+s—s+4arered. Sor <2(b+1)—1-2=2b—1,and 2¢q—1)b—qr+3¢—2 >
(2¢—1)b—q(2b—1)+3¢—2=49q—2—-b=4¢—2—-2¢q+y—1=29g—-3+y > 0. If
b<2¢—y<2¢—2,then (2¢g—1)b—qgr+3¢—2> (2¢—1)b—q(2b+1)+3¢—2 =
2g—2-b2>0

By virtue of (5.1), the walk that starts at vertex i, follows p;; to vertex j, and
goes (2¢ — 1)b— gr + 3g — 2 times around the n-cycle and (¢+1)r — (2¢+1)b+3¢+1
times around the (n — 3)-cycle is a (12¢* — 2¢ — 3,6¢> + 2q — 2)-walk from i to j. So
exp(D) < 18¢2 — 5. O

Lemmas 5.1, 5.2, 5.3 yield the following theorem.
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Theorem 5.4. Let D € Dsgi2s. Then exp(D) = 18¢® — 5 if and only if the
length of the longest red path in D is 2, and there is a blue-red-blue path in the path
s+4—5+5—...>n.

Now, we characterize the extremal digraphs in Ds,42 s whose exponents attain
the upper bounds.

Lemma 5.5. Let D € D3qy2, with s < g —2. If 2¢ + 1 red arcs on the n-cycle
are not consecutive, then

exp(D) < 12¢° + 14¢* 4+ 2q — 1.

Proof. Let (4,j) be a pair of vertices and let p;; be the shortest path in D from
i to j. Denote r = r(p;;) and b = b(p;;). We see that

2 [}]+ @i tp-ars2i s 2]

q+1
+((‘1+1)7'_(2q+1)b+2q2+3q)[ qq ]_[ q¢° +8¢ q].

4¢% + 6% + ¢

Consider the following three cases.

Case 1. Both the vertices 7 and j are on the n-cycle.

Clearly, b < ¢+ 1 and r < 2¢ + 1. Thus (2¢ — 1)b—qr +2¢> +q > (2¢ — 1)b —
g2+ 1) +2¢2+q=(2¢—1)b>0. If (2¢q—1)b—qr+2¢>+q =0, then b = 0
and 7 = 2¢ + 1. Noting that s +4 < ¢+ 2 < 2g + 3, we infer that either i or
j is on the (n — 3)-cycle. For (q + 1)r — (2¢ + 1)b + 2¢® + 3¢, if b < ¢, then
(q+1)r—(2¢+1)b+2¢>+3¢ > (g+1)r— (2¢+1)g+2¢*> +3q = (g +1)r +2¢ > 0.
If b = ¢+ 1, noting that the ¢ + 1 blue arcs on the n-cycle are not consecutive, then
r>1and (¢+1)r—(2¢+1)b+2¢>+3¢ > (¢+1)— (2¢+1)(¢+1) +2¢*> + 3¢ = ¢ > 0.

Case 2. Both the vertices ¢ and j are on the (n — 3)-cycle.

Clearly, b < g and r < 2¢—1. Thus (2¢g—1)b—qr+2¢*+q > —q(2¢—1)+2¢*+q =
2¢>0and (¢+1)r — (2¢+ 1)b+2¢> + 3¢ > —(2¢ + 1)q + 2¢> + 3¢ = 2q > 0.

Case 3. The vertex ¢ (or j) is on the path 1 — 2 — ... — s+ 3, and the vertex j
(or i) ison the pathn+1— ... = n+s.

Clearly, the path p;; contains the path s4+4 — s4+5 — ... — n. Let the number of
red arcs and blue arcs in the path s+4 — s+5 — ... — n be z and y, respectively.
Then ¢ +y =3¢ — s — 2, and

2q—y<3¢g—s—y—2<r<qg+s+y+2<2q+y,
y<b<2q—y+1.

NN
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Thus (2¢ —1)b—qr+2¢>+q > (2¢— 1)y —q(2¢+y) +2¢* +¢ =g+ (¢— 1)y > 0 and
(@+Dr—(20+1)b+2¢*+3¢ > (¢+1)(2¢—y) — (2¢+1)(2¢ —y + 1) +2¢° + 3¢ =
yqg+qg—1>0.

By virtue of (5.2), the walk that starts at vertex ¢, follows p;; to vertex j, and
along the way goes around the n-cycle (2¢ — 1)b — gr + 2¢> + ¢ times and around the
(n—3)-cycle (g4 1)r — (2¢+1)b+ 2¢* + 3q times is an (8¢> + 8¢ — 2¢, 4¢> + 6¢> + q)-
walk from i to j. So exp(D) < 12¢® + 14¢® — q¢ < 12¢® + 14¢®> + 2q — 1. O

Theorem 5.6. Let D € D3, o s with s < g—2. Thenexp(D) = 12¢3+14¢*+2¢—1
if and only if 2q 4+ 1 red arcs on the n-cycle are consecutive.

Proof. By Lemma 5.5 and Theorem 4.1, we only need to show that if 2¢q + 1
red arcs on the n-cycle are consecutive, then exp(D) > 12¢° + 14¢® + 2q — 1.

Suppose that (h, k) is a pair of nonnegative integers such that for all pairs (¢, j) of
vertices there is an (h, k)-walk from ¢ to j. Considering i = j = n, we see that there
exist nonnegative integers v and v with

=)

Since there are 2¢q + 1 consecutive red arcs on the n-cycle, the remaining ¢+ 1 arcs
of the n-cycle are consecutive blue arcs. Taking 7 and j to be the initial vertex and
the terminal vertex of 2q + 1 consecutive red arcs on the n-cycle, respectively, there
is a unique path from ¢ to j, and this path has composition (2¢ + 1,0). Hence

h—(2q+1)}

Mz—{ i

has a nonnegative integer solution. Necessarily
_ 2
= M1 h—(2¢+1) _ ] -y 2g+1] _ Ju] _ 22q +4q > 0.
k v 0 v —2¢°—-3q—1

So u > 2¢% + q. Next, taking i and j to be the initial vertex and the terminal vertex
of g consecutive blue arcs on the n-cycle, respectively, there is a unique path from ¢
to j, and this path has composition (0,¢ + 1). Hence

Mz = {k—(ZH)]

has a nonnegative integer solution. Necessarily

0 —2¢% — 1
v g+1 v 2¢° +3qg+1
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So v > 2¢*> + 3¢+ 1. Thus

u 2¢* +¢q 3 2
h+k=[1 1|M >3 2 3¢q—1 =12 14 2q — 1,
+k=[1 1] L] [3¢+2 3¢ ][2q2+3q+1] ¢ +14¢" +2q
and exp(D) > 12¢% + 14¢® + 2q — 1. O

Let the number of red arcs and blue arcs in the path s+4 — s+5— ... — n be
x and y, respectively. Note that x =3¢ —y — s —2 < 3¢ — s — 2. Let r denote the
number of red arcs in D. Thenr =4¢—x > ¢+ s+ 2, and r = ¢+ s+ 2 if and only
if t =3¢ — s — 2, that is, the arcs s+4 —s+5,s+5—5s5+6,...,n—1— n must
be red.

Lemma 5.7. Let D € D340, with s > ¢ — 1, and let D have exactly ¢+ s + 2
red arcs. If the g + s 4+ 2 red arcs are consecutive, then

exp(D) = 6¢° 4 2(3s 4+ 8)¢* +2(25 + 5)q — (s + 3).

Proof. We only need to show that exp(D) > 6¢° + 2(3s + 8)¢* + 2(2s + 5)q —
(s+3).

Suppose that (h, k) is a pair of nonnegative integers such that for all pairs (¢, j) of
vertices there is an (h, k)-walk from ¢ to j. Considering i = j = n, we see that there
exist nonnegative integers v and v with

=]

Since D has exactly ¢ + s + 2 red arcs, the arcs s+4 — s+5,s+5—s+6, ...,
n — 1 — n are red. This implies that there exist s — ¢ + 3 red arcs in the path
n—-1—-2—...—>s+4and s—q+ 1 red arcs in the pathn - n+1— ... —
n+ s — s + 4, respectively.

Taking 7 and j to be the initial vertex and the terminal vertex of ¢ + s + 2 con-
secutive red arcs, respectively, then there is a unique path from 7 to j, and this path
has composition (¢ + s+ 2,0). Hence

Mzz[h—(q+3+2)}

k

has a nonnegative integer solution. Necessarily

i S R S
SR AL
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So u > ¢* + (s + 2)q. Next, taking i and j to be the terminal vertex and the initial
vertex of ¢ + s + 2 consecutive red arcs, respectively, there is a unique path from ¢
to j, and this path has composition (3¢ — s — 2,2¢ + 1). Hence

h—(3q—s—2)]

MZ_{ k—(2g+1)

has a nonnegative integer solution. Necessarily

e [N O ) =[] e [

-

Sov>q*+(s+3)g+ (s+3). Thus

h+k=][1 1]M[“

¢* + (s +2)q ]

>[3¢+2 3¢—1
} 34 1 ]{q2+(s+3)q+(s+3)
= 64> +2(3s + 8)¢* +2(2s + 5)g — (s + 3),

and exp(D) > 6¢> +2(3s + 8)¢® + 2(2s + 5)g — (s + 3). O

Lemma 5.8. Let D € D340, with s > ¢ — 1, and let D have exactly ¢+ s + 2
red arcs. If the g + s 4+ 2 red arcs are not consecutive, then

exp(D) < 6¢° 4+ 2(3s + 8)¢® +2(2s + 5)g — (s + 3).

Proof. Let (4,j) be a pair of vertices and let p;; be the shortest path in D from
i to j. Denote r = r(p;;) and b = b(p;;). We see that

2q—|—1]

(5.3) K]+((2q—1)b—q7“+q2+2q+sq>[q+1

29— 1
+((q+1)r—(2q+1)b+q2+sq+3q+s+2){ qq }

B {4(13 +2(2s+5)¢® + (2s +3)g — s — 2]
2¢3 +2(s +3)q® + (2s +4)q

Consider the following three cases.

Case 1. Both the vertices i and j are on the n-cycle.

Clearly, b < ¢+ 1 and r < 2¢+ 1. Thus (2¢ — 1)b — qr + ¢*> + 2q + sq >
(2¢—1)b—q(2q+1)+¢>+2¢+(q—1)g = (2¢—1)b > 0 and (¢+1)r— (2¢+1)b+¢>+
sq+3q+s+2> (q+1)r—(¢+1)(2¢+1)+¢®>+(¢—1)(g+1)+3g+2= (g+1)r > 0.

682



If (2¢q—1)b—qr+q®>+2q+sq=0,then b=0,r=2¢+1, s=q— 1, and either i
or j is on the (n — 3)-cycle.

Case 2. Both the vertices ¢ and j are on the (n — 3)-cycle.

Clearly, b < g and 7 < 2¢ — 1. Thus (2¢ — 1)b—qr +¢*> +2q+sq > —q(2¢ — 1) +
P42+ (q—1)g=2¢>0and (g+1)r— 2+ 1b+¢*>+s¢+3¢+s+2>
—(2¢+1)g+ ¢+ (q—1)(g+1)+3¢+2=2¢+1>0.

Case 3. The vertex ¢ (or j) is on the path 1 — 2 — ... — s+ 3, and the vertex j
(ori)ison the pathn+1— ... 5 n+s.

Clearly, the path p;; contains the path s+4 —s+5— ... = n. So

Thus (2¢ — 1)b—qr + ¢*> +2¢+sq > —qlg+s+2)+¢* +2¢+sq = 0. If b < 2q,
then (¢g+ 1)r — (2¢+1)b+¢*>+s5¢+3q+s5+2> (¢q+1)(3¢—s—2) —2q(2¢ + 1) +
@ +sqg+3¢+s+2=2¢>0.Let b=2¢g+ 1. Since the ¢ + s + 2 red arcs are not
consecutive, we have r > 3¢ —s—1and (g+1)r — (2¢+1)b+¢*> +sq¢+3q+s+2 >
(g+1)Bg—s—1)—(2¢+1)(2¢+1)+¢*+s¢+3qg+s+2=¢q>0.

By virtue of (5.3), the walk that starts at vertex i, follows p;; to vertex j, and
along the way goes around the n-cycle (2¢ — 1)b — qr + ¢ + 2q + sq times and
around the (n — 3)-cycle (¢ + 1)r — (2¢ + 1)b + ¢* + sq + 3¢ + s + 2 times is a
(4% +2(25+5)¢%> + (25 +3)g— 5 —2,2¢° + 2(5+3)¢> + (25 + 4)q)-walk from i to j. So
exp(D) < 6¢°+2(35+8)q?+ (4s+7)g— (s+2) < 6¢3+2(35+8)¢*>+2(25+5)q— (s+3).

O

Lemma 5.9. Let D € D3g2, with s > ¢ — 1 and let there be at least one blue
arc in the path s+4 — s+5 — ... = n. Then

exp(D) < 6¢® 4 2(3s 4+ 8)¢* +2(25 + 5)q — (s + 3).

Proof. Let (i,7) be a pair of vertices and let p;; be the shortest path in D
from ¢ to j. Denote r = r(p;;) and b = b(p;;). Let the number of red arcs and blue
arcs in the path s +4 — s+5 — ... — n be = and y, respectively. Then y > 1 and
r <3¢ — s — 3. We see that

(5.4) [Z]+((2q—1)b—(J7’+q2+2q+sq)[QQ+1]

q+1

2 — 1
+((Q+1)r—(2q+1)b+q2+sq+3q+s+2)[ qq ]

[4(]3 +2(25+5)¢% + (25 +3)g — s — 2]
2¢° +2(s +3)¢*> + (25 +4)gq
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Consider the following three cases.

Case 1. Both the vertices 7 and j are on the n-cycle.

Clearly, b < ¢+ 1 and » < 2¢+ 1. Thus (2¢ — 1)b — qr + ¢*> + 2q + sq >
(2¢—1)b—q(2g+1)+¢*+2q+(q—1)g = (2¢—1)b > 0 and (g+1)r — (2¢+ 1)b+¢*+
5¢+3q+s+2> (¢+1)r—(qg+1)(2¢+ 1) +¢*+(¢—1)(g+1)+3¢+2= (¢+1)r > 0.
If (2¢—1)b—qr+q*>+2q+sq=0,then b=0,r=2¢+1, s=q— 1, and either i
or j is on the (n — 3)-cycle.

Case 2. Both the vertices ¢ and j are on the (n — 3)-cycle.

Clearly, b < g and r < 2¢ — 1. Thus (2¢ — 1)b—qr + ¢*> +2q + sq > —q(2¢ — 1) +
P42+ (q—1)g=2¢>0and (g+1)r— 2+ 1b+¢*>+s¢+3¢g+s+2>
—(2¢+1Dg+@+(g—1)(g+1)+3¢+2=2¢+1>0.

Case 3. The vertex i (or j) is on the path 1 — 2 — ... — s+ 3 and the vertex j
(or i) ison the pathn+1— ... = n+s.

Clearly, the path p;; contains the path s+4 —s+5— ... = n. So

3g—s5—y—

Thus (2g—1)b—qr+¢*+2q+sq > (2¢—1)y—aq(g+s+y+2)+¢*+2q+sq = y(g—1) > 0,
and (¢q+1)r— (2¢+1)b+¢* +sq¢+3q+s+2> (¢+1)Bg—s—y—2)— (2g+1) x
2q—y+1)+¢*+sq+3q+s+2=yqg—1>0.

By virtue of (5.4), the walk that starts at vertex 4, follows p;; to vertex j and
along the way goes around the n-cycle (2¢ — 1)b — qr + ¢*> + 2q + sq times and
around the (n — 3)-cycle (¢ + 1)r — (2¢ + 1)b + ¢* + sq + 3¢ + s + 2 times is a
(4¢3 +2(25+5)¢* + (25 +3)g— s — 2,2¢> + 2(s + 3)¢* + (25 + 4)g)-walk from i to j. So
exp(D) < 6¢°+2(35+8)q?+ (4s+7)g—(s+2) < 6¢3+2(35+8)¢*>+2(25+5)q— (s+3).

(]

Lemmas 5.7, 5.8, and 5.9 yield the following result.

Theorem 5.10. Let D € D3 05 with s > g — 1. Then exp(D) = 6¢° +
2(3s + 7)g® + (28 + 5)q — 2(s + 3) if and only if there are exactly ¢ + s + 2 red
arcs in D, and all red arcs are consecutive.
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