Article
Keywords:
Banach spaces; Schur property; hereditarily $l_p$
Summary:
Hagler and the first named author introduced a class of hereditarily $l_1$ Banach spaces which do not possess the Schur property. Then the first author extended these spaces to a class of hereditarily $l_p$ Banach spaces for $1\leq p<\infty $. Here we use these spaces to introduce a new class of hereditarily $l_p(c_0)$ Banach spaces analogous of the space of Popov. In particular, for $p=1$ the spaces are further examples of hereditarily $l_1$ Banach spaces failing the Schur property.
References:
[1] Azimi, P.:
A new class of Banach sequence spaces. Bull. of Iranian Math. Society 28 (2002), 57-68.
MR 1992259 |
Zbl 1035.46006
[3] Bourgain, J.: $\ell_1$-subspace of Banach spaces. Lecture notes. Free University of Brussels.
[4] Lindenstrauss, J., Tzafriri, L.:
Classical Banach Spaces. Vol. I sequence Spaces, Springer Verlag, Berlin.
MR 0415253 |
Zbl 0852.46015
[6] Popov, M. M.:
More examples of hereditarily $\ell _p$ Banach spaces. Ukrainian Math. Bull. 2 (2005), 95-111.
MR 2172327 |
Zbl 1166.46304