[2] Erdős, P., Gallai, T.: Graphs with given degrees of vertices. Math. Lapok 11 (1960), 264-274.
[4] Gould, R. J., Jacobson, M. S., Lehel, J.:
Potentially $G$-graphical degree sequences. In: Combinatorics, Graph Theory, and Algorithms, Vol. 1 Y. Alavi et al. New Issues Press Kalamazoo Michigan (1999), 451-460.
MR 1985076
[5] Kézdy, A. E., Lehel, J.:
Degree sequences of graphs with prescribed clique size. In: Combinatorics, Graph Theory, and Algorithms, Vol. 2 Y. Alavi New Issues Press Kalamazoo Michigan (1999), 535-544.
MR 1985084
[6] Lai, C.:
The smallest degree sum that yields potentially $C_k$-graphical sequences. J. Combin. Math. Combin. Comput. 49 (2004), 57-64.
MR 2054962 |
Zbl 1054.05027
[7] Rao, A. R.: The clique number of a graph with given degree sequence. Graph Theory, Proc. Symp. Calcutta 1976, ISI Lecture Notes 4 A. R. Rao (1979), 251-267.
[8] Rao, A. R.: An Erdős-Gallai type result on the clique number of a realization of a degree sequence. Unpublished.