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DEGREE SEQUENCES OF GRAPHS CONTAINING A CYCLE

WITH PRESCRIBED LENGTH

Jian-Hua Yin, Haikou
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Abstract. Let r > 3, n > r and π = (d1, d2, . . . , dn) be a non-increasing sequence of
nonnegative integers. If π has a realization G with vertex set V (G) = {v1, v2, . . . , vn} such
that dG(vi) = di for i = 1, 2, . . . , n and v1v2 . . . vrv1 is a cycle of length r in G, then π is
said to be potentially C′′

r -graphic. In this paper, we give a characterization for π to be
potentially C′′

r -graphic.
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1. Introduction

A non-increasing sequence π = (d1, d2, . . . , dn) of nonnegative integers is said to

be graphic if it is the degree sequence of a simple graph G on n vertices, and such a

graph G is referred to as a realization of π. The following well-known result due to

Erdős and Gallai [2] which gave a characterization for π to be graphic.

Theorem 1.1 (Erdős and Gallai [2]). Let π = (d1, d2, . . . , dn) be a non-increasing

sequence of nonnegative integers, where
n
∑

i=1

di is even. Then π is graphic if and only

if
t

∑

i=1

di 6 t(t − 1) +

n
∑

i=t+1

min{t, di}

for each t, 1 6 t 6 n.
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A non-increasing sequence π = (d1, d2, . . . , dn) of nonnegative integers is said

to be potentially Kr+1-graphic if there is a realization of π containing Kr+1 as a

subgraph, where Kr+1 is the complete graph on r + 1 vertices. If π has a realization

in which the r + 1 vertices of largest degree induce a clique, then π is potentially

Ar+1-graphic. In [7], Rao proved that π is potentially Ar+1-graphic if and only if π is

potentially Kr+1-graphic. In [8], Rao gave a characterization (Theorem 1.2) for π to

be potentially Ar+1-graphic. This is a generalization of Erdős-Gallai characterization

for π to be graphic (which corresponds to r = 0).

Theorem 1.2 (Rao [8]). Let n > r + 1 and π = (d1, d2, . . . , dn) be a non-

increasing sequence of nonnegative integers, where dr+1 > r and
n
∑

i=1

di is even. Then

π is potentially Ar+1-graphic if and only if

s
∑

i=1

di +

t
∑

i=1

dr+1+i 6 (s + t)(s + t − 1) +

r+1
∑

i=s+1

min{s + t, di − r + s}

+

n
∑

i=r+t+2

min{s + t, di}

for any s and t, 0 6 s 6 r + 1 and 0 6 t 6 n − r − 1.

The original proof of Theorem 1.2 remains unpublished, but Kézdy and Lehel

in [5] have given a different proof using network flows.

A non-increasing sequence π = (d1, d2, . . . , dn) of nonnegative integers is said to be

potentially Cr-graphic if there is a realization of π containing Cr as a subgraph, where

Cr is the cycle of length r. If π has a realization containing Cr on the |V (Cr)| highest

degree vertices in π, then π is said to be potentially C′

r-graphic. Furthermore, if π has

a realization G with vertex set V (G) = {v1, v2, . . . , vn} such that dG(vi) = di for

i = 1, 2, . . . , n and v1v2 . . . vrv1 is a Cr, then π is said to be potentially C′′

r -graphic.

It follows from a result in [4] that π is potentially C′

r-graphic if and only if π is

potentially Cr-graphic. An extremal problem on potentially Cr-graphic sequences

was investigated by Lai [6]. In this paper, we shall give a characterization for π to

be potentially C′′

r -graphic. In other words, we will prove the following

Theorem 1.3. Let r > 3, n > r and π = (d1, d2, . . . , dn) be a non-increasing se-

quence of nonnegative integers, where dr > 2 and
n
∑

i=1

di is even. Then π is potentially
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C′′

r -graphic if and only if

p
∑

i=1

di +

r+q
∑

i=r+1

di 6 (p + q)(p + q − 1) + min{p + q, dp+1 − 1}

+

r−1
∑

i=p+2

min{p + q, di − 2} + min{p + q, dr − 1}

+

n
∑

i=r+q+1

min{p + q, di}

for any p and q, 0 6 p 6 r and 0 6 q 6 n − r.

Remark. If p = 0, the above inequality means that

r+q
∑

i=r+1

di 6 q(q − 1) +

r
∑

i=1

min{q, di − 2} +

n
∑

i=r+q+1

min{q, di}.

2. The proof of Theorem 1.3

In order to prove Theorem 1.3, we shall use a simple version of a general result

of Fulkerson, Hoffman and Mcandrew [3] (see also [1] and [5]). Let H be a simple

graph on vertex set V (H) = {v1, v2, . . . , vn}. We say that H satisfies the odd-cycle

condition, if between any two disjoint odd cycles there is an edge.

Theorem 2.1 (Fulkerson, Hoffman and Mcandrew [3]). Assume that H =

(V (H), E(H)) satisfies the odd-cycle condition, where V (H) = {v1, v2, . . . , vn}.

There exists a subgraph G ⊆ H such that every vertex vi has degree di, if and only

if

(i)
n
∑

i=1

di is even,

(ii) for every A, B ⊆ V (H) such that A ∩ B = ∅, we have

∑

vi∈A

di 6 |{(vi, vj) : vivj ∈ E(H), vi ∈ A, vj ∈ V (H) \ B}| +
∑

vi∈B

di.

The following observation is obvious.

Observation 2.1. Let π = (d1, d2, . . . , dn), where d1 > d2 > . . . > dn. Take

i1, i2, . . . , ip ∈ {1, 2, . . . , n} such that i1 < i2 < . . . < ip and i1 > 1, i2 > 2, . . .,

ip > p. If di1 + di2 + . . . + dip
= d1 + d2 + . . . + dp, then d1 = d2 = . . . = dip

.
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P r o o f of Theorem 1.3. To prove the necessity, we let G be a graph with vertex

set V (G) = {v1, v2, . . . , vn} such that dG(vi) = di for i = 1, 2, . . . , n and v1v2 . . . vrv1

is a Cr in G. Then,
p
∑

i=1

di +
r+q
∑

i=r+1

di is the sum of the number of edges from vh to

{v1, . . . , vp, vr+1, . . . , vr+q} the summation being taken over h = 1, 2, . . . , n. Now the

contribution of vh to this sum is at most p+ q−1 if h ∈ {1, . . . , p, r+1, . . . , r+ q}, at

most min{p+q, dh−1} if h = p+1, at mostmin{p+q, dh−2} if h ∈ {p+2, . . . , r−1},

at most min{p+q, dh−1} if h = r and at mostmin{p+q, dh} if h ∈ {r+q+1, . . . , n}.

Thus the necessity is proved.

We now prove the sufficiency. Denote L(p, q) =
p
∑

i=1

(di − 2) +
r+q
∑

i=r+1

di and

R(p, q) = (p + q)(p + q − 1) − 2p +min{p + q, dp+1 − 1}

+

r−1
∑

i=p+2

min{p + q, di − 2} + min{p + q, dr − 1}

+

n
∑

i=r+q+1

min{p + q, di}.

Assume that r > 3, n > r and π = (d1, d2, . . . , dn) is a non-increasing sequence of

nonnegative integers such that dr > 2,
n
∑

i=1

di is even and L(p, q) 6 R(p, q) for any p

and q, 0 6 p 6 r and 0 6 q 6 n − r.

Let π′

r = (d′1, . . . , d
′

r, d
′

r+1, . . . , d
′

n), where d′i = di − 2 for 1 6 i 6 r and d′i = di

for r + 1 6 i 6 n, and let H be the graph obtained from Kn with vertex set

V (Kn) = {v1, v2, . . . , vn} by deleting edges v1v2, v2v3, . . . , vr−1vr, vrv1. It is easy

to see that π is potentially C′′

r -graphic if and only if H has a subgraph G with the

degree sequence π′

r such that every vertex vi has degree d′i. Observe that between

any two disjoint cycles of H there is an edge. Therefore, H satisfies the odd-cycle

condition and we may apply Theorem 2.1.

Let K = {v1, v2, . . . , vr} and A, B ⊆ V (H) such that A∩B = ∅. Let A1 = A∩K,

A2 = A \ K, B1 = B ∩ K, B2 = B \ K, C = K \ (A1 ∪ B1), D = {vr+1, . . . , vn} \

(A2 ∪ B2) and set p = |A1|, q = |A2|, b1 = |B1|, b2 = |B2|. For convenience, we

denote

L′(A, B) =
∑

vi∈A

d′i =
∑

vi∈A1

(di − 2) +
∑

vi∈A2

di,

R′(A, B) = |{(vi, vj) : vivj ∈ E(H), vi ∈ A, vj ∈ V (H) \ B}| +
∑

vi∈B

d′i

= |{(vi, vj) : vivj ∈ E(H), vi ∈ A, vj ∈ V (H) \ B}|

+
∑

vi∈B1

(di − 2) +
∑

vi∈B2

di,
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F (A, B) =
∑

vi∈C

(p + q) +
∑

vi∈B1

(di − 2) +
∑

vi∈D

(p + q) +
∑

vi∈B2

di,

W (A, B) =

r−b1
∑

i=p+1

(p + q) +

r
∑

i=r+1−b1

(di − 2) +

n−b2
∑

i=r+q+1

(p + q) +

n
∑

i=n+1−b2

di.

Clearly, L′(A, B) 6 L(p, q). We now prove that L′(A, B) 6 R′(A, B).

If b1 = 0, then B1 = ∅ and |C| = r−p. Since |{(vi, vj) : vivj ∈ E(H), vi ∈ A, vj ∈

V (H)\B}| is the number of counting the edges of H between A and V (H)\ (A∪B)

and double counting the edges induced by A, we get

R′(A, B) > (p + q)(p + q − 1) − 2p + F (A, B)

> (p + q)(p + q − 1) − 2p + W (A, B) > R(p, q) > L(p, q).

If b1 > 1 and |C| = 0, then b1 = r − p. Thus

R′(A, B) > (p + q)(p + q − 1) − 2p + 2 + F (A, B)

> (p + q)(p + q − 1) − 2p + 2 + W (A, B) > R(p, q) > L(p, q).

If b1 > 1 and |C| = 1, then b1 = r − p − 1. Thus

R′(A, B) > (p + q)(p + q − 1) − 2p + 1 + F (A, B)

> (p + q)(p + q − 1) − 2p + 1 + W (A, B) > R(p, q) > L(p, q).

We assume that b1 > 1 and |C| = r − p − b1 > 2. Then p 6 r − 3. If v1 ∈ A1 and

vr ∈ B1, then

R′(A, B) > (p + q)(p + q − 1) − 2p + 1 + F (A, B)

> (p + q)(p + q − 1) − 2p + 1 + W (A, B) > R(p, q) > L(p, q).

If v1 ∈ A1 and vr /∈ B1, then

R′(A, B) > (p + q)(p + q − 1) − 2p + F (A, B)

> (p + q)(p + q − 1) − 2p +

r−b1−1
∑

i=p+1

(p + q)

+

r−1
∑

i=r−b1

(di − 2) + (p + q) +

n−b2
∑

i=r+q+1

(p + q) +

n
∑

i=n+1−b2

di

> R(p, q) > L(p, q).
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If L′(A, B) < L(p, q), then

R′(A, B) > (p + q)(p + q − 1) − 2p + 1 + F (A, B) − 1

> (p + q)(p + q − 1) − 2p + 1 + W (A, B) − 1

> R(p, q) − 1 > L(p, q) − 1 > L′(A, B).

We further assume that v1 /∈ A1 and L′(A, B) = L(p, q). Then
∑

vi∈A1

(di − 2) =

p
∑

i=1

(di − 2) and
∑

vi∈A2

di =
r+q
∑

i=r+1

di. By Observation 2.1, we have that d1 − 2 =

d2 − 2 = . . . = dp+1 − 2. We now consider the following two cases.

Case 1 : q > 1. In this case, if p + q > dp+2 − 1, then

R′(A, B) > (p + q)(p + q − 1) − 2p + F (A, B)

> (p + q)(p + q − 1) − 2p + W (A, B)

> (p + q)(p + q − 1) − 2p + min{p + q, dp+1 − 1}

+

r
∑

i=p+2

min{p + q, di − 2} + 1 +

n
∑

i=r+q+1

min{p + q, di} = R(p, q) > L(p, q).

If L(p, q) < R(p, q), then

R′(A, B) > (p + q)(p + q − 1) − 2p + F (A, B)

> (p + q)(p + q − 1) − 2p + 1 + W (A, B) − 1

> R(p, q) − 1 > L(p, q).

If p+q 6 dp+2−2 and L(p, q) = R(p, q), then by L(p+1, q−1) 6 R(p+1, q−1), we

have that L(p+1, q−1)−L(p, q) 6 R(p+1, q−1)−R(p, q), that is, dp+1−dr+q 6 0.

Hence dp+1 = dr+q. Thus

R′(A, B) > (p + q)(p + q − 1) − 2p + F (A, B)

> (p + q)(p + q − 1) − 2p + W (A, B) > R(p, q) > L(p, q).

Case 2 : q = 0. In this case, if L(p, 0) < R(p, 0) orR(p, 0) 6 p(p−1)−2p+W (A, B),

then R′(A, B) > L(p, 0) is clear.

If L(p, 0) = R(p, 0) > p(p − 1) − 2p + W (A, B), then we only have L(p, 0) =

R(p, 0) = p(p−1)−2p+W (A, B)+1, and p 6 di−2 for p+1 6 i 6 r−b1, p > di−2

for r + 1 − b1 6 i 6 r − 1, p > dr − 1, p 6 di for r + 1 6 i 6 n − b2 and p > di for

n+1− b2 6 i 6 n. On the one hand, it follows from d1 −2 = d2−2 = . . . = dp+1−2

that

L(p, 0) = p(d1 − 2) = p(p − 1) − 2p + py + z,
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and hence

L(p + 1, 0) = (p + 1)(d1 − 2) = (p + 1)
(

p − 3 + y +
z

p

)

,

where y = n− p− b1 − b2 and z =
r−1
∑

i=r+1−b1

(di − 2) + (dr − 1) +
n
∑

i=n+1−b2

di. On the

other hand, it is easy to see that

L(p + 1, 0) 6 R(p + 1, 0)

= (p + 1)p − 2(p + 1) + min{p + 1, dp+2 − 1} +

r−1
∑

i=p+3

min{p + 1, di − 2}

+ min{p + 1, dr − 1} +

n
∑

i=r+1

min{p + 1, di}

6 (p + 1)p − 2(p + 1) + (p + 1)(y − 1) + z

= (p + 1)
(

p − 3 + y +
z

p + 1

)

< (p + 1)
(

p − 3 + y +
z

p

)

= L(p + 1, 0), a contradiction.

�
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