Previous |  Up |  Next

Article

Keywords:
derivative; Denjoy integral; Henstock-Kurzweil integral; fundamental theorem of calculus; vector lattice; Riesz space
Summary:
In a previous paper we defined a Denjoy integral for mappings from a vector lattice to a complete vector lattice. In this paper we define a Henstock-Kurzweil integral for mappings from a vector lattice to a complete vector lattice and consider the relation between these two integrals.
References:
[1] Birkhoff, G.: Lattice Theory. Amer. Math. Soc. (1940). MR 0001959 | Zbl 0063.00402
[2] Boccuto, A.: Differential and integral calculus in Riesz spaces. Tatra Mt. Math. Publ. 14 (1998), 293-323. MR 1651221
[3] Cristescu, R.: Ordered Vector Spaces and Linear Operators. Abacus Press (1976). MR 0467238 | Zbl 0322.46010
[4] Izumi, S.: An abstract integral (X). Proc. Imp. Acad. Japan 18 (1942), 543-547. DOI 10.3792/pia/1195573784 | MR 0021080 | Zbl 0061.09909
[5] Izumi, S., Sunouchi, G., Orihara, M., Kasahara, M.: Theory of Denjoy integral, I--II. Japanese Proc. Physico-Mathematical Soc. Japan 17 (1943), 102-120, 321-353.
[6] Kawasaki, T.: Order derivative of operators in vector lattices. Math. Japonica 46 (1997), 79-84. MR 1466119 | Zbl 0907.46038
[7] Kawasaki, T.: On Newton integration in vector spaces. Math. Japonica 46 (1997), 85-90. MR 1466120 | Zbl 0913.46004
[8] Kawasaki, T.: Order Lebesgue integration in vector lattices. Math. Japonica 48 (1998), 13-17. MR 1644310 | Zbl 0921.46041
[9] Kawasaki, T.: Approximately order derivatives in vector lattices. Math. Japonica 49 (1999), 229-239. MR 1687642 | Zbl 0937.47041
[10] Kawasaki, T.: Order derivative and order Newton integral of operators in vector lattices. Far East J. Math. Sci. 1 (1999), 903-926. MR 1734826 | Zbl 1069.46507
[11] Kawasaki, T.: Uniquely determinedness of the approximately order derivative. Sci. Math. Japonicae Online 7 (2002), 333-336 Sci. Math. Japonicae 57 (2003), 365-371. MR 1959995 | Zbl 1039.46036
[12] Kawasaki, T.: Denjoy integral and Henstock-Kurzweil integral in vector lattices, I. (to appear). MR 2532373
[13] Kubota, Y.: Theory of the Integral. Japanese Maki (1977).
[14] Lee, P. Y.: Lanzhou Lectures on Henstock Integration. World Scientific (1989). MR 1050957 | Zbl 0699.26004
[15] Luxemburg, W. A. J., Zaanen, A. C.: Riesz Spaces. North-Holland (1971). Zbl 0231.46014
[16] McGill, P.: Integration in vector lattices. J. London Math. Soc. 11 (1975), 347-360. DOI 10.1112/jlms/s2-11.3.347 | MR 0393414 | Zbl 0309.28003
[17] Riečan, B., Neubrunn, T.: Integral, Measure, and Ordering. Kluwer (1997). MR 1489521
[18] Romanovski, P.: Intégrale de Denjoy dans les espaces abstraits. Recueil Mathématique (Mat. Sbornik) N.S. 9 (1941), 67-120. MR 0004292 | Zbl 0026.00302
[19] Schaefer, H. H.: Banach Lattices and Positive Operators. Springer-Verlag (1974). MR 0423039 | Zbl 0296.47023
[20] Vulikh, B. Z.: Introduction to the Theory of Partially Orderd Spaces. Wolters-Noordhoff (1967). MR 0224522
Partner of
EuDML logo