Previous |  Up |  Next

Article

Keywords:
boundary behavior of holomorphic functions; exceptional sets; boundary functions; Dirichlet problem; Radon inversion problem
Summary:
We solve the following Dirichlet problem on the bounded balanced domain $\Omega $ with some additional properties: For $p>0$ and a positive lower semi-continuous function $u$ on $\partial \Omega $ with $u(z)=u(\lambda z)$ for $|\lambda |=1$, $z\in \partial \Omega $ we construct a holomorphic function $f\in \Bbb O(\Omega )$ such that $u(z)=\int _{\Bbb Dz}|f|^pd \frak L_{\Bbb Dz}^2$ for $z\in \partial \Omega $, where $\Bbb D=\{\lambda \in \Bbb C\:|\lambda |<1\}$.
References:
[1] Globevnik, J.: Holomorphic functions which are highly nonintegrable at the boundary. Isr. J. Math. 115 (2000), 195-203. DOI 10.1007/BF02810586 | MR 1749678 | Zbl 0948.32015
[2] Jakóbczak, P.: The exceptional sets for functions from the Bergman space. Port. Math. 50 (1993), 115-128. MR 1300590
[3] Jakóbczak, P.: Highly non-integrable functions in the unit ball. Isr. J. Math. 97 (1997), 175-181. DOI 10.1007/BF02774034 | MR 1441246
[4] Jakóbczak, P.: Exceptional sets of slices for functions from the Bergman space in the ball. Can. Math. Bull. 44 (2001), 150-159. DOI 10.4153/CMB-2001-019-7 | MR 1827853
[5] Kot, P.: Description of simple exceptional sets in the unit ball. Czech. Math. J. 54 (2004), 55-63. DOI 10.1023/B:CMAJ.0000027246.96443.28 | MR 2040218 | Zbl 1052.30006
[6] Kot, P.: Boundary functions in $L^2H(\Bbb B^n)$. Czech. Math. J. 57 (2007), 29-47. DOI 10.1007/s10587-007-0041-0 | MR 2309946
[7] Kot, P.: Homogeneous polynomials on strictly convex domains. Proc. Am. Math. Soc. 135 (2007), 3895-3903. DOI 10.1090/S0002-9939-07-08939-3 | MR 2341939 | Zbl 1127.32005
[8] Kot, P.: Bounded holomorphic functions with given maximum modulus on all circles. Proc. Amer. Math. Soc 137 (2009), 179-187. DOI 10.1090/S0002-9939-08-09468-9 | MR 2439439 | Zbl 1157.32001
Partner of
EuDML logo