Previous |  Up |  Next

Article

Keywords:
anti-de Sitter space; $k$th mean curvature; Gauss equations
Summary:
In this paper, we study closed $k$-maximal spacelike hypersurfaces $M^n$ in anti-de Sitter space $H_1^{n+1}(-1)$ with two distinct principal curvatures and give some integral formulas about these hypersurfaces.
References:
[1] Calabi, E.: Examples of Bernstein problems for nonlinear equations. Proc. Symp. Pure Math. 15 (1970), 223-230. MR 0264210
[2] Cao, L., Wei, G.: A new characterization of hyperbolic cylinder in anti de Sitter space $H^{n+1}_1(-1)$. J. Math. Anal. Appl. 329 (2007), 408-414. DOI 10.1016/j.jmaa.2006.06.075 | MR 2306811 | Zbl 1112.53052
[3] Cheng, S. Y., Yau, S. T.: Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces. Ann. Math. 104 (1976), 407-419. DOI 10.2307/1970963 | MR 0431061 | Zbl 0352.53021
[4] Hu, Z., Scherfner, M., Zhai, S.: On spacelike hypersurfaces with constant scalar curvature in the de Sitter space. Differ. Geom. Appl. 25 (2007), 594-611. DOI 10.1016/j.difgeo.2007.06.008 | MR 2373937 | Zbl 1134.53034
[5] Ishihara, T.: Maximal spacelike submanifolds of a pseudo-Riemannian space of constant curvature. Mich. Math. J. 35 (1988), 345-352. DOI 10.1307/mmj/1029003815 | MR 0978304 | Zbl 0682.53055
[6] Li, H.: Hypersurfaces with constant scalar curvature in space forms. Math. Ann. 305 (1996), 665-672. DOI 10.1007/BF01444243 | MR 1399710 | Zbl 0864.53040
[7] Li, H.: Global rigidity theorems of hypersurfaces. Ark. Mat. 35 (1997), 327-351. DOI 10.1007/BF02559973 | MR 1478784 | Zbl 0920.53028
[8] Omori, H.: Isometric immersions of Riemannian manifolds. J. Math. Soc. Japan. 19 (1967), 205-214. DOI 10.2969/jmsj/01920205 | MR 0215259 | Zbl 0154.21501
[9] Otsuki, T.: Minimal hypersurfaces in a Riemannian manifold of constant curvature. Am. J. Math. 92 (1970), 145-173. DOI 10.2307/2373502 | MR 0264565 | Zbl 0196.25102
[10] Perdomo, O.: Rigidity of minimal hypersurfaces of spheres with two principal curvatures. Arch. Math. 82 (2004), 180-184. DOI 10.1007/s00013-003-4834-6 | MR 2047672 | Zbl 1062.53055
[11] Wang, Q. L.: Rigidity of Clifford minimal hypersurfaces. Monatsh. Math. 140 (2003), 163-167. DOI 10.1007/s00605-002-0039-5 | MR 2017667 | Zbl 1066.53112
[12] Wei, G. X.: Rigidity theorem for hypersurfaces in a unit sphere. Monatsh. Math. 149 (2006), 343-350. DOI 10.1007/s00605-005-0378-0 | MR 2284653 | Zbl 1110.53050
Partner of
EuDML logo