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Abstract. In this paper, we study closed k-maximal spacelike hypersurfaces M
n in anti-

de Sitter space H
n+1
1
(−1) with two distinct principal curvatures and give some integral

formulas about these hypersurfaces.
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1. Introduction

Let Mn+1

1 (c) be an (n + 1)-dimensional Lorentzian manifold of constant curva-

ture c, which we also call a Lorentzian space form. When c > 0, then Mn+1

1 (c) =

Sn+1

1 (c) (i.e. (n+1)-dimensional de Sitter space); when c = 0, thenMn+1

1 (c) = Ln+1

(i.e. (n + 1)-dimensional Lorentz-Minkowski space); when c < 0, then Mn+1

1 (c) =

Hn+1

1 (c) (i.e. (n+1)-dimensional anti-de Sitter space). A hypersurfaceM ofMn+1

1 (c)

is said to be spacelike if the induced metric on M from that of the ambient space is

positive definite.

E. Calabi [1] was the first to study the Bernstein problem for a maximal spacelike

entire graph in Ln+1 and proved that it has to be a hyperplane provided n 6 4.

S. Y. Cheng and S.T. Yau [3] proved that the conclusion remains true for all n. As

a generalization of the Bernstein type problem, Cheng-Yau [3] and T. Ishihara [5]

proved that a complete maximal spacelike submanifold M of Mn+1

1 (c) (c > 0) is

totally geodesic.

The first author was supported by Japan Society for Promotion of Science. The third
author was supported by grant Proj. No. R17-2008-001-01000-0 from Korea Science &
Engineering Foundation.
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In recent years, the main stream of investigation has turned towards more general

classes of Lorentz ambient spaces, dealing with problems concerning the kth mean

curvatures Hk of M . When Hk = 0, a spacelike hypersurface M is said to be k-

maximal. In particular, what can we say about k-maximal spacelike hypersurfaces

in Hn+1

1 (−1)?

On the other hand, some interesting results for hypersurfaces with two distinct

principal curvatures can be found in [2], [4], [10], [11], [12].

In this paper we study closed k-maximal spacelike hypersurfacesMn in the anti-de

Sitter spaceHn+1

1 (−1) with two distinct principal curvatures. We prove the following

result:

Theorem 1.1. For n > 3, letM be an n-dimensional closed k-maximal not (k+1)-

maximal connected spacelike hypersurface in the anti-de Sitter space Hn+1
1 (−1) with

two distinct principal curvatures, then

(1.1)

∫

M

{

S −
n(k2 − 2k + n)

k(n − k)

}

dM > 0,

where S is the squared norm of the second fundamental form of M .

2. Preliminaries

Let M be an n-dimensional closed spacelike hypersurface of the anti-de Sitter

spaceHn+1

1 (−1). For any p ∈ M we choose a local orthonormal frame e1, . . . , en, en+1

inHn+1

1 (−1) around p such that e1, . . . , en are tangent toM . Take the corresponding

dual coframe ω1, . . . , ωn, ωn+1 with the matrix of connection one forms being ωij .

The metric of Hn+1

1 (−1) is given by ds2 =
∑

i

ω2
i − ω2

n+1.

In this paper we shall make use of the following convention on the ranges of indices:

1 6 i, j, k, . . . 6 n, 1 6 a, b, . . . 6 n − 1.

A well-known argument [3] shows that the forms ωin+1 may be expressed as

ωin+1 =
∑

j

hijωj, hij = hji. The second fundamental form is B =
∑

i,j

hijωi

⊗

ωj .

The mean curvature of M is given by H = 1

n

∑

i

hii.

The Gauss equations are

Rijkl = −(δikδjl − δilδjk) − (hikhjl − hilhjk),(2.1)

Rij = −(n − 1)δij − nHhij +
∑

k

hikhkj ,(2.2)

n(n − 1)(r + 1) = −n2H2 + S,(2.3)
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where r is the normalized scalar curvature ofM and the squared norm of the second

fundamental form is

(2.4) S =
∑

i,j

(hij)
2.

The Codazzi equations are

(2.5) hijk = hikj ,

where the covariant derivative of hij is defined by

(2.6)
∑

k

hijkωk = dhij +
∑

k

hkjωki +
∑

k

hikωkj .

The second covariant derivative of hij is defined by

(2.7)
∑

l

hijklωl = dhijk +
∑

l

hljkωli +
∑

l

hilkωlj +
∑

l

hijlωlk.

By exterior differentiation of (2.6), we obtain the Ricci identities

(2.8) hijkl − hijlk =
∑

m

hmjRmikl +
∑

m

himRmjkl.

We may choose a frame field {e1, . . . , en+1} such that

(2.9) ωin+1 = λiωi, that is hij = λiδij , i = 1, 2, . . . , n,

where λi are the principal curvatures. If we assume that M is a closed spacelike

hypersurface with two distinct principal curvatures, one of the principal curvatures

of M is simple (i.e. of multiplicity 1). Then we may put

(2.10) λ1 = λ2 = . . . = λn−1 = λ; λn = µ; λ 6= µ.

Then the kth mean curvature Hk of the hypersurface can be given in such a way

that

(2.11) Sk = (−1)kCk
nHk =

∑

16i1<i2<...<ik6n

λi1 . . . λik
,

where Ck
n = n!/k!(n − k)!.
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From (2.10) and Hk ≡ 0 we deduce that

(2.12) Sk = (−1)kCk
nHk = Ck

n−1λ
k + Ck−1

n−1λ
k−1µ ≡ 0,

and it follows that

(2.13) λk−1[(n − k)λ + kµ] ≡ 0.

On the other hand, we know that

(2.14) Sk+1 = λk(Ck+1

n−1λ + Ck
n−1µ) 6= 0,

then it follows form (2.13) and (2.14) that

(2.15) λ 6= 0, (n − k)λ + kµ ≡ 0.

By making use of the similar methods in [9], we can prove the following

Lemma 2.1 ([9]). LetM be an n-dimensional spacelike hypersurface inHn+1

1 (−1)

such that the multiplicities of all its principal curvatures are constant. Then the dis-

tribution of the space of principal vectors corresponding to each principal curvature

is completely integrable. In particular, if the multiplicity of a principal curvature is

greater than 1, then this principal curvature is constant on each integral submanifold

of the corresponding distribution of the space of principal vectors.

By Lemma 2.1 and (2.10) we have

(2.16) λ,1 = . . . = λ,n−1 = 0, µ,1 = . . . = µ,n−1 = 0.

By means of (2.6) and (2.9) we obtain

(2.17) hijkωk = δijdλj + (λi − λj)ωij .

Summarizing the above arguments we obtain

hijk = 0, if i 6= j, λi = λj ,(2.18)

haab = 0, haan = λ,n,(2.19)

hnna = 0, hnnn = µ,n.(2.20)
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Proposition 2.1. For n > 3 let M be an n-dimensional k-maximal not (k + 1)-

maximal connected spacelike hypersurface in Hn+1

1 (−1) with two distinct princi-

pal curvatures. Then M is a locus of the moving (n − 1)-dimensional submani-

foldMn−1

1 (s) along which the principal curvature λ of multiplicity (n−1) is constant

and λ satisfies the following ordinary differential equation of order 2:

(2.21)
d2λ

ds2
=

n + k

nλ

(dλ

ds

)2

+
n(n − k)λ3

k2
−

nλ

k
.

3. Proof of Theorem 1.1

We first prove the following key lemma.

Lemma 3.1. For n > 3, let M be an n-dimensional k-maximal not (k + 1)-

maximal spacelike hypersurface in Hn+1

1 (−1) with two distinct principal curvatures.

Then we have

(3.1)
1

S

∑

k

(S,k)2 =
4n(k2 − 2k + n)

(3n − 2)k2 − 2nk + n2

∑

i,j,k

h2
ijk.

P r o o f. Let λ1 = . . . = λn−1 = λ, λn = µ, then we have (n − k)λ + kµ = 0.

A direct calculation then gives

S = (n − 1)λ2 + µ2 =
n(k2 − 2k + n)λ2

k2
,(3.2)

S,i =
2n(k2 − 2k + n)

k2
λλ,i.

By (3.2) and (2.16) we have

(3.3)
1

S

∑

k

(S,k)2 =
1

S
(S,n)2 =

4n(k2 − 2k + n)

k2
(λ,n)2.

On the other hand, (2.18), (2.19) and (2.20) yield

∑

i,j,k

h2
ijk =

∑

a,b,c

h2
abc + 3

∑

a,b

h2
abn + 3

∑

a

h2
ann + h2

nnn(3.4)

= 3
∑

a

h2
naa + h2

nnn = 3(n − 1)(λ,n)2 + (µ,n)2

=
(3n − 2)k2 − 2nk + n2

k2
(λ,n)2.

We have completed the proof of Lemma 3.1. �
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Lemma 3.2. Let M be an n-dimensional spacelike hypersurface in Hn+1
1 (−1).

Then we have

(3.5)
1

2
∆S =

∑

i,j,k

h2
ijk +

∑

i

λi(nH),ii +
1

2

∑

i,j

Rijij(λi − λj)
2,

where λi are the principal curvatures of M and (·),ij is the covariant derivative

relative to the induced metric.

P r o o f of Theorem 1.2. Since λ 6= 0 and Hk = 0, we deduce from (2.13) that

(3.6) (n − k)λ + kµ = 0

on M . First, we compute

(3.7)
1

2
∆(ln S) =

1

2

∑

k

(lnS),kk =
1

2

∑

k

(S,k

S

)

,k
=

1

2

∆S

S
−

1

2

∑

k(S,k)2

S2
.

Using Lemma 3.2 and the Gauss equation Ranan = −1 − λµ, we obtain

1

2
∆S =

∑

i,j,k

h2
ijk +

1

2

∑

i,j

Rijij(λi − λj)
2 +

∑

i

λi(nH),ii(3.8)

=
∑

i,j,k

h2
ijk +

∑

a

Ranan(λ − µ)2 +
∑

i

λi(nH),ii

=
∑

i,j,k

h2
ijk + (n − 1)(−1 − λµ)(λ − µ)2 +

∑

i

λi(nH),ii

=
∑

i,j,k

h2
ijk +

(n − 1)n2

k2

[

−1 +
n − k

k
λ2

]

λ2 +
∑

i

λi(nH),ii.

From (2.7) and (2.9) we have

(3.9) λ,ijωj = dλ,i + λ,jωji.

From (2.17), (2.18), (2.19) and (2.20) we obtain

ωan =
λ,n

λ − µ
ωa.

Therefore, we have dωn =
∑

i

ωni ∧ ωi = 0, which shows that we may put

ωn = ds.

348



Then we have from (n − k)λ + kµ = 0 that

ωan =
kλ,n

nλ
ωa = (log λk/n)′ωa,

where the prime denotes the derivative with respect to s.

Let i = a in (3.9). We see from (2.16), (2.18), (2.19) and (2.20) that

(3.10) λ,ajωj = dλ,a + λ,jωja = λ,nωna = λ,n
λ,n

µ − λ
ωa = −

k

nλ
(λ,n)2ωa.

It follows that

(3.11) λ,aa = −
k

nλ
(λ,n)2.

Let i = n in (3.9). We know from (2.16) and (2.21) that

(3.12) λ,njωj = dλ,n + λ,jωjn = dλ,n =
{n + k

nλ
(λ,n)2 +

n(n − k)λ3

k2
−

nλ

k

}

ωn.

It follows that

(3.13) λ,nn =
n + k

nλ
(λ,n)2 +

n(n − k)λ3

k2
−

nλ

k
.

Putting (3.11) and (3.13) into (3.8), we have

1

2
∆S =

∑

i,j,k

h2
ijk +

(n − 1)n2

k2

[

−1 +
n − k

k
λ2

]

λ2 +
∑

i

λi(nH),ii(3.14)

=
∑

i,j,k

h2
ijk +

(n − 1)n2

k2

[

−1 +
n − k

k
λ2

]

λ2

+ (n − 1)λ
n(k − 1)

k
λ,aa + µ

n(k − 1)

k
λ,nn

=
∑

i,j,k

h2
ijk +

(n − 1)n2

k2

[

−1 +
n − k

k
λ2

]

λ2 + (n − 1)(1 − k)(λ,n)2

−
n(n − k)(k − 1)

k2

[n + k

n
(λ,n)2 +

n(n − k)

k2
λ4 −

n

k
λ2

]

=
{

1 −
(k − 1)[(n − 2)k2 + n2]

(3n − 2)k2 − 2nk + n2

}

∑

i,j,k

h2
ijk

+
n2(k2 − 2k + n)

k4
λ2{−k + (n − k)λ2}.
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Putting (3.14), (3.1) and (3.2) into (3.7), we have

1

2
∆(ln S)(3.15)

=
1

2

∆S

S
−

1

2

∑

k(S,k)2

S2

=
1

2S

{[

1 −
(k − 1)((n − 2)k2 + n2)

(3n − 2)k2 − 2nk + n2

]

∑

i,j,k

h2
ijk

+
n2(k2 − 2k + n)

k4
λ2[−k + (n − k)λ2]

}

−
1

2

∑

k(S,k)2

S2

=
{ (3n − 2)k2 − 2nk + n2 − (k − 1)[(n − 2)k2 + n2]

4n(k2 − 2k + n)
−

1

2

}

∑

k(S,k)2

S2

+
n

k

{

−1 +
k(n − k)

n(k2 − 2k + n)
S

}

= −
k(n − 2)(k − 1)2

4n(k2 − 2k + n)

∑

k(S,k)2

S2
+

n

k

{

−1 +
k(n − k)

n(k2 − 2k + n)
S

}

6
n

k

{

−1 +
k(n − k)

n(k2 − 2k + n)
S

}

.

Integrating (3.15) over M , we get

∫

M

{

S −
n(k2 − 2k + n)

k(n − k)

}

dM > 0.

Equality holds if and only if M has constant principal curvatures and M is not

compact. In our case, M is compact, so equality dose not hold. This completes the

proof of our Theorem 1.1 from introduction.
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