[1] Belobrov, P. K.:
Minimal extension of linear functionals onto the second conjugate space. Mat. Zametki 27 (1980), 439-445, 494.
MR 0570754
[2] Casazza, P. G., Kalton, N. J.:
Notes on approximation properties in separable {Banach} spaces. Geometry of Banach Spaces, Proc. Conf. Strobl 1989, London Mathematical Society Lecture Note Series 158 (P.F.X. Müller and W. Schachermayer, eds.), Cambridge University Press (1990), 49-63.
MR 1110185
[5] Godefroy, G., Kalton, N. J., Saphar, P. D.:
Unconditional ideals in {Banach} spaces. Studia Math. 104 (1993), 13-59.
MR 1208038 |
Zbl 0814.46012
[17] Lima, A., Oja, E.:
Ideals of finite rank operators, intersection properties of balls, and the approximation property. Studia Math. 133 (1999), 175-186.
MR 1686696 |
Zbl 0930.46020
[23] Lindenstrauss, J., Tzafriri, L.:
Classical Banach Spaces I. Springer, Berlin-Heidelberg-New York (1977).
MR 0500056 |
Zbl 0362.46013
[24] Oja, E.:
Uniqueness of the extension of linear continuous functionals according to the Hahn-Banach theorem. Eesti NSV Tead. Akad. Toimetised Füüs.-Mat. 33 (1984), 424-438, 473 Russian.
MR 0775767
[25] Oja, E.:
Strong uniqueness of the extension of linear continuous functionals according to the Hahn-Banach theorem. Mat. Zametki 43 (1988), 237-246, 302 Russian; English translation in Math. Notes 43 (1988), 134-139.
MR 0939524
[26] Oja, E.:
Dual de l'espace des opérateurs linéaires continus. C. R. Acad. Sc. Paris, Sér. A 309 (1989), 983-986.
MR 1054748 |
Zbl 0684.47025
[27] Oja, E.:
Extension of functionals and the structure of the space of continuous linear operators. Tartu. Gos. Univ., Tartu (1991), Russian.
MR 1114543 |
Zbl 0783.46016
[31] Oja, E.:
The impact of the Radon-Nikodým property on the weak bounded approximation property. Rev. R. Acad. Cien. Serie A. Mat. 100 (2006), 325-331.
MR 2267414 |
Zbl 1112.46017