[1] Boas, H. P., Straube, E. J.:
Global regularity of the $\bar{\partial} $-Neumann problem: a survey of the $L^2$-Sobolev theory. Several Complex Variables (M. Schneider and Y.-T. Siu, eds.) MSRI Publications, vol. 37, Cambridge University Press (1999), 79-111.
MR 1748601
[2] Catlin, D.:
Global regularity of the $\bar{\partial} $-Neumann problem. Proc. Sympos. Pure Math. 41 39-49; A.M.S. Providence, Rhode Island, 1984.
MR 0740870 |
Zbl 0578.32031
[4] Chen, So-Chin, Shaw, Mei-Chi:
Partial differential equations in several complex variables. Studies in Advanced Mathematics, Vol. 19, Amer. Math. Soc. (2001).
MR 1800297 |
Zbl 0963.32001
[7] Fu, S., Straube, E. J.:
Compactness in the $\bar{\partial}$-Neumann problem. Complex Analysis and Geometry (J. McNeal, ed.), Ohio State Math. Res. Inst. Publ. 9 (2001), 141-160.
MR 1912737 |
Zbl 1011.32025
[8] Folland, G., Kohn, J.:
The Neumann problem for the Cauchy-Riemann complex. Annals of Math. Studies 75, Princeton University Press (1972).
MR 0461588 |
Zbl 0247.35093
[10] Haslinger, F.:
The canonical solution operator to $\bar{\partial}$ restricted to spaces of entire functions. Ann. Fac. Sci. Toulouse Math. 11 (2002), 57-70.
DOI 10.5802/afst.1018 |
MR 1986383
[12] Haslinger, F., Helffer, B.:
Compactness of the solution operator to $\bar{\partial}$ in weighted $L^2$-spaces. J. Funct. Anal. 243 (2007), 679-697.
DOI 10.1016/j.jfa.2006.09.004 |
MR 2289700
[14] Henkin, G., Iordan, A.:
Compactness of the $\bar{\partial}$-Neumann operator for hyperconvex domains with non-smooth B-regular boundary. Math. Ann. 307 (1997), 151-168.
DOI 10.1007/s002080050028 |
MR 1427681
[15] Kohn, J.:
Subellipticity of the $\bar{\partial}$-Neumann problem on pseudoconvex Domains: sufficient conditions. Acta Math. 142 (1979), 79-122.
DOI 10.1007/BF02395058 |
MR 0512213
[18] Ligocka, E.:
The regularity of the weighted Bergman projections. Seminar on deformations, Proceedings, Lodz-Warsaw, 1982/84, Lecture Notes in Math. {\it 1165}, Springer-Verlag, Berlin (1985), 197-203.
MR 0825756 |
Zbl 0594.35049