Previous |  Up |  Next

Article

Keywords:
Henstock variational measure; Henstock-Kurzweil integral
Summary:
In this paper we show that the measure generated by the indefinite Henstock-Kurzweil integral is $F_{\sigma \delta }$ regular. As a result, we give a shorter proof of the measure-theoretic characterization of the Henstock-Kurzweil integral.
References:
[1] Bongiorno, D., Piazza, L. Di, Skvortsov, V. A.: Variational measures related to local systems and the ward property of ${\cal P}$-adic path bases. Czech. Math. J. 56 (2006), 559-578. DOI 10.1007/s10587-006-0037-1 | MR 2291756 | Zbl 1164.26316
[2] Piazza, L. Di: Variational measures in the theory of the integration in ${\mathbb R}^m$. Czech. Math. J. 51 (2001), 95-110. DOI 10.1023/A:1013705821657 | MR 1814635
[3] Faure, Claude-Alain: A descriptive definition of some multidimensional gauge integrals. Czech. Math. J. 45 (1995), 549-562. MR 1344520 | Zbl 0852.26010
[4] Henstock, R., Muldowney, P., Skvortsov, V. A.: Partitioning infinite-dimensional spaces for generalized Riemann integration. Bull. London Math. Soc. 38 (2006), 795-803. DOI 10.1112/S0024609306018819 | MR 2268364 | Zbl 1117.28010
[5] Kurzweil, J., Jarník, J.: Differentiability and integrability in $n$ dimensions with respect to $\alpha$-regular intervals. Results Math. 21 (1992), 138-151. DOI 10.1007/BF03323075 | MR 1146639
[6] Tuo-Yeong, Lee: A full descriptive definition of the Henstock-Kurzweil integral in the Euclidean space. Proc. London Math. Soc. 87 (2003), 677-700. MR 2005879
[7] Tuo-Yeong, Lee: Product variational measures and Fubini-Tonelli type theorems for the Henstock-Kurzweil integral. J. Math. Anal. Appl. 298 (2004), 677-692. DOI 10.1016/j.jmaa.2004.05.033 | MR 2086983
[8] Tuo-Yeong, Lee: A characterisation of multipliers for the Henstock-Kurzweil integral. Math. Proc. Cambridge Philos. Soc. 138 (2005), 487-492. DOI 10.1017/S030500410500839X | MR 2138575
[9] Tuo-Yeong, Lee: The Henstock variational measure, Baire functions and a problem of Henstock. Rocky Mountain J. Math 35 (2005), 1981-1997. DOI 10.1216/rmjm/1181069626 | MR 2210644
[10] Tuo-Yeong, Lee: Some full descriptive characterizations of the Henstock-Kurzweil integral in the Euclidean space. Czech. Math. J. 55 (2005), 625-637. DOI 10.1007/s10587-005-0050-9 | MR 2153087
[11] Tuo-Yeong, Lee: Product variational measures and Fubini-Tonelli type theorems for the Henstock-Kurzweil integral II. J. Math. Anal. Appl. 323 (2006), 741-745. DOI 10.1016/j.jmaa.2005.10.045 | MR 2262241
[12] Thomson, B. S.: Derivates of interval functions. Mem. Amer. Math. Soc. 93 (1991). MR 1078198 | Zbl 0734.26003
[13] Ward, A. J.: On the derivation of additive interval functions of intervals in $m$-dimensional space. Fund. Math. 28 (1937), 265-279.
Partner of
EuDML logo