[3] Faure, Claude-Alain:
A descriptive definition of some multidimensional gauge integrals. Czech. Math. J. 45 (1995), 549-562.
MR 1344520 |
Zbl 0852.26010
[5] Kurzweil, J., Jarník, J.:
Differentiability and integrability in $n$ dimensions with respect to $\alpha$-regular intervals. Results Math. 21 (1992), 138-151.
DOI 10.1007/BF03323075 |
MR 1146639
[6] Tuo-Yeong, Lee:
A full descriptive definition of the Henstock-Kurzweil integral in the Euclidean space. Proc. London Math. Soc. 87 (2003), 677-700.
MR 2005879
[7] Tuo-Yeong, Lee:
Product variational measures and Fubini-Tonelli type theorems for the Henstock-Kurzweil integral. J. Math. Anal. Appl. 298 (2004), 677-692.
DOI 10.1016/j.jmaa.2004.05.033 |
MR 2086983
[10] Tuo-Yeong, Lee:
Some full descriptive characterizations of the Henstock-Kurzweil integral in the Euclidean space. Czech. Math. J. 55 (2005), 625-637.
DOI 10.1007/s10587-005-0050-9 |
MR 2153087
[11] Tuo-Yeong, Lee:
Product variational measures and Fubini-Tonelli type theorems for the Henstock-Kurzweil integral II. J. Math. Anal. Appl. 323 (2006), 741-745.
DOI 10.1016/j.jmaa.2005.10.045 |
MR 2262241
[13] Ward, A. J.: On the derivation of additive interval functions of intervals in $m$-dimensional space. Fund. Math. 28 (1937), 265-279.