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Abstract. In this paper we show that the measure generated by the indefinite Henstock-
Kurzweil integral is Fσδ regular. As a result, we give a shorter proof of the measure-theoretic
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1. Introduction

It is well known that a function F is absolutely continuous on [a, b] ⊂ R if and

only if the Lebesgue-Stieltjes measure µF generated by F is absolutely continuous

with respect to the Lebesgue measure. This remarkable result has been generalized

by several authors; see, for example, [1], [6], [7], [10], [11] and the references therein.

In this paper we give a shorter proof of the corresponding result for the multiple

Henstock-Kurzweil (equivalently, the Perron) integral; see Theorem 4.5. As a by-

product of our new techniques, we obtain a somewhat unexpected result that the

measure VHKF generated by the indefinite Henstock-Kurzweil integral is Fσδ regular;

see Theorem 3.8.

2. Preliminaries

Let m > 1 be an integer and let R
m be the m-dimensional Euclidean space

equipped with the maximum norm ||| · |||. An interval in R
m is a set of the form

[u,v] :=
m
∏

i=1

[ui, vi], where u = (u1, . . . , um), v = (v1, . . . , vm) with ui, vi ∈ R and
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ui < vi for i = 1, . . . , m. Moreover, we set (u,v) :=
m
∏

i=1

(ui, vi). Following [3], given

any [u,v] ∈ Im([a,b]), we let l([u,v]) = max
i=1,...,m

(vi −ui), t([u,v]) = min
i=1,...,m

(vi −ui)

and reg([u,v]) = (t([u,v]))(l([u,v]))−1.

Let [a,b] :=
m
∏

i=1

[ai, bi] be a fixed interval in R
m. For x ∈ R

m and r > 0, set

B(x, r) := {y ∈ R
m : |||y − x||| < r}, where y − x = (y1 − x1, . . . , ym − xm). A

partition P in [a,b] (of [a,b]) is a finite collection {(I1, ξ1), . . . , (Ip, ξp)} of interval-

point pairs, where I1, . . . , Ip are non-overlapping intervals such that
p
⋃

i=1

Ii ⊆ [a,b]

(respectively
p
⋃

i=1

Ii = [a,b]) and ξi ∈ Ii for i = 1, . . . , p. Given that Z ⊆ [a,b], a

positive function δ on Z is called a gauge on Z. A partition P is said to be

(i) anchored in Z if {ξ1, . . . , ξp} ⊂ Z,

(ii) δ-fine if Ii ⊂ B(ξi, δ(ξi)) for i = 1, . . . , p.

Let Im([a,b]) be the family of all subintervals of [a,b]. A function F : Im([a,b]) →

R is said to be additive if F (I ∪J) = F (I)+F (J) for each non-overlapping intervals

I, J ∈ Im([a,b]) such that I ∪ J ∈ Im([a,b]). Let F be an interval function on

Im([a,b]) and X an arbitrary subset of [a,b]. For each gauge δ on X , we set

V (F, X, δ) := sup

{

∑

(I,x)∈P

|F (I)| : P is a δ-fine partition anchored in X

}

and

VHKF (X) := inf{V (F, X, δ) : δ is a gauge on X}.

This extended real-valued set function VHKF (·) is a metric outer measure (cf. [3,

Proposition 3.3]), known as the Henstock variational measure generated by F . We

say that VHKF is absolutely continuous with respect to the m-dimensional Lebesgue

measure µm, in symbol VHKF ≪ µm, if VHKF (Z) = 0 for each set Z ⊂ [a,b] such

that µm(Z) = 0.

3. Some results concerning the Henstock variational measure VHKF

In this section we will collect some useful results that will be required in the proof

of our main result. First of all, we need the following refinement of [6, Lemma 6.2].
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Lemma 3.1. Let F : Im([a,b]) → R be an additive interval function. If X ⊆

[a,b] and VHKF (X) is finite, then for each ε > 0 there exists a gauge δ on X such

that
p

∑

i=1

|F (Ii)| < VHKF

(

X ∩

p
⋃

i=1

Ii

)

+ ε

for each δ-fine partition {(I1,x1), . . . , (Ip,xp)} anchored in X .

P r o o f. For each ε > 0 we choose a gauge δ on X such that

V (F, X, δ) < VHK(X) +
ε

2
.

Consider any δ-fine partition {(I1,x1), . . . , (Ip,xp)} anchored in X . Clearly the

set X \
p
⋃

i=1

Ii may be assumed to be non-empty. Then the map z 7→ ∆(z) :=

min
{

δ(z), dist
(

{z},
p
⋃

i=1

Ii

)}

is a gauge on X \
p
⋃

i=1

Ii, where dist(U, V ) denotes the

distance between two subsets U , V of [a,b]. Thus there exists a ∆-fine partition

{(J1,y1), . . . , (Jq,yq)} anchored in X \
p
⋃

i=1

Ii such that

VHKF

(

X \

p
⋃

i=1

Ii

)

<

q
∑

i=1

|F (Ji)| +
ε

2
.

Since it is clear that {(I1,x1), . . . , (Ip,xp)} ∪ {(J1,y1), . . . , (Jq,yq)} is a δ-fine

partition anchored in X , the previous inequalities and the countable subadditivity

of VHKF yield

p
∑

i=1

|F (Ii)| < VHKF (X) −

q
∑

i=1

|F (Ji)| +
ε

2
6 VHKF

(

X ∩

p
⋃

i=1

Ii

)

+ ε.

The proof is complete. �

Let X =
m
∏

i=1

Xi and let k ∈ {1, . . . , m}. Following [6], we set ΦX,k(T ) :=
m
∏

i=1

Yi,

where Yk = T and Yi = Xi for each i ∈ {1, . . . , m} \ {k}.

Lemma 3.2. Let F : Im([a,b]) → R be an additive interval function such that

VHKF ≪ µm. If k ∈ {1, . . . , m}, I ∈ Im([a,b]) and x ∈ I, then for each ε > 0 there

exists ηk,I(x) > 0 such that

|F (ΦI,k([uk, vk]))| < ε

whenever 0 < vk − uk < ηk,I(x).
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P r o o f. We observe that µm(ΦI,k({xk})) = 0, so the assumption VHKF ≪ µm

implies that VHKF (ΦI,k({xk})) = 0. Hence for each ε > 0 there exists a gauge δk on

ΦI,k({xk}) such that

V (F, ΦI,k({xk}), δk) < ε.

Define a gauge δ on I by setting

δ(z) =

{

δk(z) if z ∈ ΦI,k({xk}),

dist({z}, ΦI,k({xk})) if z ∈ I \ ΦI,k({xk}).

According to Cousin’s lemma (cf. [6, Lemma 3.1]), δ-fine partitions of I exist.

Hence, by our choice of δ, we may fix a δk-fine partition Pk anchored in ΦI,k({xk})

such that

ΦI,k({xk}) ⊆
⋃

(J,ξ)∈Pk

J ⊆ I.

Letting ηk,I(x) := min
{

(vk − uk) :
( m

∏

i=1

[ui, vi], ξ
)

∈ Pk

}

, it is now easy to check

that the conclusion of the lemma holds. �

Following [6, p. 688], an additive interval function F is continuous on Im([a,b])

if for each ε > 0 there exists η > 0 such that |F (I) − F (J)| < ε whenever I, J ∈

Im([a,b]) satisfy µm((I \ J) ∪ (J \ I)) < η. In view of Lemma 3.2, the proof of the

next theorem is considerably simpler than that of [6, Lemma 5.17 and Theorem 5.18].

Theorem 3.3 [6, Theorem 5.18]. Let F : Im([a,b]) → R be an additive interval

function. If VHKF ≪ µm, then F is continuous on Im([a,b]).

P r o o f. Let G(x) = F ([a,x]) (x ∈ [a,b]). According to Lemma 3.2 and due

to the compactness of [a,b], G is uniformly continuous on [a,b]. Therefore, by the

additivity of F , we conclude that F is continuous on Im([a,b]). �

In order to prove the next theorem, we need the following definitions.

Definition 3.4 [6, Definition 5.1]. Let m = 1 and let 0 < v − u < b − a < ∞.

An interval-point pair ([u, v], x) is said to be

(a) −1-special if u = x ∈ (a, b);

(b) 0-special if any one of the following conditions is satisfied:

(i) x ∈ (u, v),

(ii) u = x = a,

(iii) v = x = b;

(c) 1-special if v = x ∈ (a, b).
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Definition 3.5 [6, Definition 5.3]. Let
m
∏

i=1

Ii ∈ Im([a,b]). An interval-point pair

( m
∏

i=1

Ii,x
)

is said to be λ-special if (Ii, xi) is λi-special for i = 1, . . . , m.

The following important approximation theorem is a consequence of the above

results.

Theorem 3.6. Let F : Im([a,b]) → R be an additive interval function such that

VHKF ≪ µm. If X ⊆ [a,b] and ε > 0, then there exist a Fσ-set Y and an upper

semicontinuous gauge ∆ on Y such that X ⊆ Y ⊆ [a,b] and

V (F, Y, ∆) 6 VHKF (X) + ε.

If, in addition, X is closed, then Y can be taken to be X .

P r o o f. We may assume that X is uncountable and VHKF (X) is finite. For each

ε > 0 we select a gauge δ0 on X corresponding to ε/3m+1 in Lemma 3.1. For k ∈ N,

we let Xk = δ−1
0 ([1/k,∞)), Y0 = ∅ and Yk = Xk, where W denotes the closure of

W ⊆ [a,b]. Set Y =
∞
⋃

n=1
Yk so that Y is a Fσ-set containing X . Next, we define an

upper semicontinuous gauge ∆ on Y by letting

∆(x) =

{

1 if x ∈ Y1,

min{1/k, dist({x}, Yk−1)} if x ∈ Yk \ Yk−1 for some integer k > 2

and consider any ∆-fine partition P anchored in Y . As X is uncountable and

VHKF (X) is finite, we may suppose that Pλ := {([u,v],x) ∈ P : ([u,v],x) is λ-

special} is non-empty for each λ ∈ {−1, 0, 1}m. Using Theorem 3.3, the condition

VHKF ≪ µm and the finiteness of VHKF (X), there exists η > 0 such that the

following conditions hold for each λ ∈ {−1, 0, 1}m:

(A) [u+ ηλ,v+ ηλ] :=
m
∏

i=1

[ui + ηλi, vi + ηλi] ∈ Im([a,b]) whenever ([u,v],x) ∈ Pλ,

(B) |F ([u + ηλ,v + ηλ]) − F ([u,v])| < ε/(4(3m)#P ) whenever ([u,v],x) ∈ Pλ,

(C) Xk ∩ (u+ ηλ,v+ ηλ) is non-empty whenever ([u,v],x) ∈ Pλ and x ∈ Yk \Yk−1

for some k ∈ N,

(D) VHKF (X ∩ Wλ) < ε/4(3m), where Wλ :=
⋃

([u,v],x)∈Qλ

[u + ηλ,v + ηλ] and

Qλ := {([u,v],x) ∈ Pλ : µm([u,v] ∩ Y ) = 0}.

Since P =
⋃

λ∈{−1,0,1}m

Pλ and {Pλ : λ ∈ {−1, 0, 1}m} is pairwise disjoint, we infer

from (A), the triangle inequality and (B) that

(1)
∑

([u,v],x)∈P

|F ([u,v])| <
ε

4
+

∑

λ∈{−1,0,1}m

∑

([u,v],x)∈Pλ

|F ([u + ηλ,v + ηλ])| .
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To this end, let λ ∈ {−1, 0, 1}m and Rλ ∈ {Qλ, Pλ \ Qλ}. If ([u,v],x) ∈ Rλ,

then it follows from (C) that there exists z ∈ X ∩ (u + ηλ,v + ηλ) such that

{([u + ηλ,v + ηλ], z) : ([u,v],x) ∈ Rλ} is a ∆-fine, and hence δ0-fine, partition

anchored in X . Therefore our choice of δ0 implies that

(2)
∑

([u,v],x)∈Rλ

|F ([u + ηλ,v + ηλ])| < VHKF

(

X ∩
⋃

([u,v],x)∈Rλ

[u + ηλ,v + ηλ]

)

+
ε

4(3m)
.

Combining (1), (2) and (D), we get the desired result. �

Following [12, p. 20], we say that an outer measure µ is said to be Fσδ regular if

for every set X there is a Fσδ set Y containing X with µ(X) = µ(Y ). The next

theorem is an easy consequence of Theorem 3.6.

Theorem 3.7. Let F be given as in Theorem 3.6. Then VHKF is Fσδ regular.

The next theorem, which is the main result of this section, generalizes [6,

Lemma 6.2] and [9, Theorem 3.6].

Theorem 3.8. Let F : Im([a,b]) → R be an additive interval function such that

VHKF ≪ µm. If X ⊆ [a,b] is closed and VHKF (X) is finite, then for each ε > 0

there exists an upper semicontinuous gauge δ on X such that

p
∑

i=1

|F (Ii)| < VHKF

(

X ∩

p
⋃

i=1

Ii

)

+ ε

for each δ-fine partition {(I1,x1), . . . , (Ip,xp)} anchored in X .

P r o o f. In view of Theorem 3.6, the proof is similar to that of Lemma 3.1. �

4. A measure-theoretic characterization of the

Henstock-Kurzweil integral

In this section we give a shorter proof of the measure-theoretic characterization of

the Henstock-Kurzweil integral established in [6]; see Theorem 4.5.

Definition 4.1. A function f : [a,b] → R is said to be Henstock-Kurzweil inte-

grable on [a,b] if there exists A ∈ R with the following property: given ε > 0 there

exists a gauge δ on [a,b] such that

∣

∣

∣

∣

∑

(I,x)∈P

f(x)µm(I) − A

∣

∣

∣

∣

< ε
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for each δ-fine partition P of [a,b]. Here A is called the Henstock-Kurzweil integral

of f over [a,b], and we write A as (HK)
∫

[a,b] f(x) dx.

For further properties of the Henstock-Kurzweil integral, consult, for instance, [8]

and references therein.

The next theorem, whose original proof is long and involved (cf. [6, Section 5]), is

now an easy consequence of [2, Theorem 1] and Theorem 3.6.

Theorem 4.2 [6, Theorem 4.1]. Let F : Im([a,b]) → R be an additive interval

function such that VHKF ≪ µm. Then there exists a sequence {Xk}∞k=1 of closed

sets such that [a,b] =
∞
⋃

k=1

Xk and VHKF (Xk) is finite for each k ∈ N.

Let F be given as in Theorem 4.2. According to [3, 3.10 Theorem], F is derivable

µm-almost everywhere on [a,b], that is, F ′(x) exists for µm-almost all x ∈ [a,b].

Recall that F ′(x) exists if for each ε > 0 and 0 < α 6 1 there exists δ(x) > 0 such

that

|F ′(x)µm(I) − F (I)| < εµm(I)

whenever x ∈ I ⊂ B(x, δ(x)), I ∈ Im([a,b]) and reg(I) > α. The next lemma is a

modest extension of [5, Corollary 2].

Lemma 4.3. Let F : Im([a,b]) → R be an additive interval function and suppose

that F is derivable at each point of a non-empty closed set X ⊂ (a,b). Then given

ε > 0 there exists an upper semicontinuous gauge ∆ on X such that

(3) |F ′(x)µm(I) − F (I)| < ε(l(I))m

whenever x ∈ X , I ∈ Im([a,b]) and I ⊂ B(x, ∆(x)) ∩ [a,b].

P r o o f. According to our assumptions and [5, Corollary 2], for each ε > 0 there

exists a gauge δ0 on X such that

(4) |F ′(z)µm(J) − F (J)| <
ε(l(J))m

3

provided that z ∈ X , J ∈ Im([a,b]) and J ⊂ B(z, δ0(z)).

We may further assume that δ0(z) < dist({z}, [a,b] \ (a,b)) for each z ∈ X . Let

Xk := δ−1
0 ([1/k,∞)) (k ∈ N) and define an upper semicontinuous gauge ∆ on X by

setting

∆(x) =

{

1
2 if x ∈ X1,

min{ 1
2k−1, 1

2 dist({x}, Xk−1)} if x ∈ Xk \ Xk−1 for some integer k > 2.
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Now we prove (3). Select an x ∈ X and choose I ∈ Im([a,b]) and I ⊂ B(x, ∆(x)).

Next, we pick a y ∈ δ−1
0 ([1/q(x),∞)) such that |||x − y||| < min{δ0(x), ∆(x)}, where

q(x) := min{k ∈ N : x ∈ Xk}. Then it follows from the triangle inequality that

I ⊂ B(y, 2∆(x)) ⊂ B(y, δ0(y)); in particular, (4) implies that

|F ′(y)µm(I) − F (I)| <
ε(l(I))m

3
.

It remains to prove that |F ′(x) − F ′(y)| < 2
3ε. According to our choice of y and

∆, we get |||x − y||| < min{δ0(x), δ0(y)}. Hence we may select a sufficiently small

cube K ⊂ B(x, δ0(x)) ∩ B(y, δ0(y)) so that µm(K) = (l(K))m. By (4) again, we

conclude that |F ′(x) − F ′(y)| < 2
3ε. The proof is complete. �

The following simple modification of [9, Theorem 3.11] is sufficient for the purpose

of this paper. Moreover, the proof is considerably simpler and shorter than that of

[9, Theorem 3.11].

Theorem 4.4. Let F : Im([a,b]) → R be an additive interval function such that

VHKF ≪ µm. If F is derivable at each point of a non-empty closed set X ⊆ (a,b),

F ′|X is bounded and VHKF (X) is finite, then for each ε > 0 there exists an upper

semicontinuous gauge δ on X such that

∑

(I,x)∈P

|F ′(x)µm(I) − F (I)| < ε

for each δ-fine partition P anchored in X .

P r o o f. For each ε > 0 we let δ1 and δ2 be upper semicontinuous gauges on X

corresponding to ε0 := 2−(m+1)ε(4+µm([a,b])+ sup
x∈X

|F ′(x)|)−1 in Theorem 3.8 and

Lemma 4.3, respectively. Then our assumptions imply that there exists N ∈ N such

thatXN := δ−1
1 ([1/N,∞))∩δ−1

2 ([1/N,∞)) is compact, non-empty, µm(X\XN) < ε0

and VHKF (X\XN) < ε0. Next, we fix an open set G ⊃ X such that µm(G\XN) < ε0

and define an upper semicontinuous gauge δ on X by letting

δ(x) =

{

1/N if x ∈ XN ,

min{δ1(x), dist
(

{x}, XN ∪ ([a,b] \ G)
)

} if x ∈ X \ XN .

Let f(x) := F ′(x) (x ∈ X) and consider any δ-fine partition P anchored in X .

For any given (I,x) ∈ P , we follow the proof of Ward [13, 3. Lemma] to fix a 1
2 -

regular net N (I) of I. Further, for each J ∈ N (I) satisfying J ∩ XN 6= ∅, we fix a
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xJ ∈ J ∩ XN . Then, by the triangle inequality, we get

∑

(I,x)∈P

|f(x)µm(I) − F (I)|

6

{

∑

(I,x)∈P

x∈X\XN

|f(x)|µm(I) +
∑

(I,x)∈P

x∈X\XN

|F (I)| +
∑

(I,x)∈P

x∈XN

∑

J∈N(I)
J∩XN =∅

|f(x)|µm(J)

}

+

{

∑

(I,x)∈P

x∈XN

∑

J∈N(I)
J∩XN 6=∅

|f(xJ )µm(J) − F (J)| +
∑

(I,x)∈P

x∈XN

∑

J∈N(I)
J∩XN 6=∅

|f(xJ ) − f(x)|µm(J)

}

+
∑

(I,x)∈P

x∈XN

∣

∣

∣

∣

∑

J∈N(I)
J∩XN=∅

F (J)

∣

∣

∣

∣

:= S1 + S2 + S3.

Our choice of δ implies that S1 < ε0 sup
x∈X

|f(x)| + 2ε0 + ε0 sup
x∈X

|f(x)|. Also, S2 6

(2m−1ε0 + 2ε0)µm([a,b]), since δ(x) = 1/N 6 δ2(x) for all x ∈ XN and (l(J))m 6

2m−1µm(J) for each 1
2 -regular interval J ⊆ [a,b].

It remains to prove that S3 < 3mε0. Choose a ([u,v],x) ∈ P such that x ∈ XN .

Let A0([u,v]) = [u,v] and for r = 1, . . . , m, we let

Ar([u,v]) =

{ r
⋂

k=1

Φ[u,v],k([sk, tk]) : [s, t] ∈ N ([u,v])

and XN ∩
r

⋂

k=1

Φ[u,v],k([sk, tk]) 6= ∅

}

,

where Φ[u,v],k([sk, tk]) =
m
∏

i=1

Wi, Wk = [sk, tk] and Wi = [ui, vi] whenever i ∈

{1, . . . , m} \ {k}. For any given r ∈ {1, . . . , m} and K ∈ Ar−1([u,v]), we let B(K)

be the smallest collection of subinterval of K such that K \
⋃

J∈Ar([u,v])

J =
⋃

U∈B(K)

U .

Consequently,

S3 =
∑

(I,x)∈P

x∈XN

∣

∣

∣

∣

m
∑

r=1

∑

K∈Ar−1(I)

∑

J∈B(K)

F (J)

∣

∣

∣

∣

6

m
∑

r=1

∑

(I,x)∈P

x∈XN

∑

K∈Ar−1(I)

∑

J∈B(K)

|F (J)| < 3mε0.

Combining the above inequalities completes the proof. �
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The collection of all functions that are Henstock-Kurzweil integrable on [a,b] will

be denoted by HK[a,b]. We are now ready to state and prove the main result of this

section.

Theorem 4.5 [6, Theorem 4.3] . Let F : Im([a,b]) → R be an additive interval

function. The following conditions are equivalent.

(i) There exists f ∈ HK[a,b] such that F (I) = (HK)
∫

I
f(x) dx for each I ∈

Im([a,b]).

(ii) VHKF ≪ µm.

P r o o f. The implication (i) =⇒ (ii) is just [6, Theorem 3.8]. For the converse,

suppose that (ii) holds. In view of Theorem 4.2, [3, 3.10 Theorem] and Lemma 4.3,

there exists a sequence {Xk}∞k=1 of pairwise disjoint of closed subsets of [a,b] so that

µm

(

[a,b] \
∞
⋃

k=1

Xk

)

= 0, F is derivable at each point of the set
∞
⋃

k=1

Xk and the sum

sup
x∈Xk

|F ′(x)| + VHKF (Xk) is finite for each k ∈ N. Define a function f on [a,b] by

letting f(x) = F ′(x) if x ∈
∞
⋃

k=1

Xk and 0 otherwise. As a consequence of condition

(ii) and Theorem 4.4, for each ε > 0 there exists a gauge δ on [a,b] such that

∑

(I,x)∈P

|f(x)µm(I) − F (I)| < ε

for each δ-fine partition P in [a,b]. Hence the additivity of F implies that (i) holds.

The proof is complete. �

The proof of Theorem 4.5 relies on Theorem 4.2, for which no satisfactory analogue

in infinite dimension is known. Thus it is an open question whether Theorem 4.5

holds for infinite-dimensional generalized Riemann integrals defined in [4].
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