Previous |  Up |  Next

Article

Keywords:
bounded commutative residuated $\ell$-monoid; lattice; direct product decomposition; internal direct factor
Summary:
The notion of bounded commutative residuated $\ell $-monoid ($BCR$ $\ell $-monoid, in short) generalizes both the notions of $MV$-algebra and of $BL$-algebra. Let $\c A$ be a $BCR$ $\ell $-monoid; we denote by $\ell (\c A)$ the underlying lattice of $\c A$. In the present paper we show that each direct product decomposition of $\ell (\c A)$ determines a direct product decomposition of $\c A$. This yields that any two direct product decompositions of $\c A$ have isomorphic refinements. We consider also the relations between direct product decompositions of $\c A$ and states on $\c A$.
References:
[1] Birkhoff, G.: Lattice Theory. Third Edition Providence (1967). MR 0227053 | Zbl 0153.02501
[2] Cignoli, R., D'Ottaviano, M. I., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning, Trends in Logic, Studia Logica Library Vol. 7. Kluwer Academic Publishers Dordrecht (2000). MR 1786097
[3] Dvurečenskij, A., Rachůnek, J.: Probabilistic averaging in bounded commutative residuated $\ell$-monoids. Discrete Math. 306 (2006), 1317-1326. DOI 10.1016/j.disc.2005.12.024 | MR 2237716
[4] Dvurečenskij, A., Rachůnek, J.: Bounded commutative residuated $\ell$-monoids with general comparability. Soft Comput. 10 (2006), 212-218. DOI 10.1007/s00500-005-0473-0
[5] Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers Dordrecht (1998). MR 1900263
[6] Hashimoto, J.: On the product decompositions of partially ordered sets. Math. Japonicae 1 (1948), 120-123. MR 0030502
[7] Jakubík, J.: Direct product decompositions of $MV$-algebras. Czech. Math. J. 44 (1994), 725-739.
[8] Jakubík, J.: Direct product decompositions of pseudo $MV$-algebras. Archivum Math. 37 (2001), 131-142. MR 1838410
[9] Jakubík, J.: Direct product decompositions of pseudo effect algebras. Math. Slovaca 55 (2005), 379-398. MR 2181779
[10] Jakubík, J., Csontóová, M.: Cancellation rule for internal direct product decompositions of a connected partially ordered set. Math. Bohenica 125 (2000), 115-122. MR 1752083
[11] Kurosh, A. G.: Group Theory. Third Edition Moskva (1967), Russian. Zbl 0189.30801
[12] Rachůnek, J., Šalounová, D.: Direct decompositions of dually residuated lattice ordered monoids. Discuss. Math. Gen. Algebra Appl. 24 (2004), 63-74. DOI 10.7151/dmgaa.1076 | MR 2118156
[13] Swamy, K. L. M.: Dually residuated lattice ordered semigroups. Math. Ann. 159 (1965), 105-114. DOI 10.1007/BF01360284 | MR 0183797 | Zbl 0138.02104
Partner of
EuDML logo