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Abstract. The notion of bounded commutative residuated ℓ-monoid (BCR ℓ-monoid, in
short) generalizes both the notions of MV -algebra and of BL-algebra. Let A be a BCR ℓ-
monoid; we denote by ℓ(A ) the underlying lattice of A . In the present paper we show that
each direct product decomposition of ℓ(A ) determines a direct product decomposition of A .
This yields that any two direct product decompositions of A have isomorphic refinements.
We consider also the relations between direct product decompositions of A and states on A .
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1. Introduction

A bounded commutative residuated ℓ-monoid (BCR ℓ-monoid, in short) is an

algebra A = (A;⊙,→,∨,∧, 1, 0) of type (2, 2, 2, 2, 0, 0) satisfying certain axioms

(cf. Dvurečenskij and Rach̊unek [3], [4]; cf. also Section 2 for a detailed definition).

The algebra ℓ(A ) = (A;∨,∧, 1, 0) is a lattice with the greatest element 1 and the

least element 0; we say that ℓ(A ) is the underlying lattice of A .

Particular cases of BCR ℓ-monoids are MV -algebras (cf. Cignoli, D’Ottaviano

and Mundici [2]) and BL-algebras (cf. Hájek [5]). On the other hand, the notion

of BCR ℓ-monoid is a particular case of the notion of the commutative residuated

ℓ-monoid. This is a dual of the notion of the DRL-monoid which was introduced

and studied by Swamy [13].

This work was supported by Slovak Research and Development Agency under the con-
tract No APVV-0071-06.
This work has been partially supported by the Slovak Academy of Sciences via the project
Center of Excellence - Physics of Information (grant I/2/2005).
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Direct product decompositions of MV -algebra were dealt with by the author [7];

for the case of pseudo MV -algebras and pseudo effect algebras cf. [8] or [9], respec-

tively.

Two-factor direct product decompositions of dually residuated lattice ordered

monoids were investigated by Rach̊unek and Šalounová [12].

LetA be a BCR ℓ-monoid. In the present paper we prove that each direct product

decomposition of the lattice ℓ(A ) determines a direct product decomposition of A .

Any two internal direct product decompositions of A have a common refinement.

Hence any two direct product decompositions of A have isomorphic refinements. We

consider also the relations between direct product decompositions of A and states

on A .

2. Preliminaries

We recall the definition of a BCR ℓ-monoid (cf. [3]).

A BCR ℓ-monoid is an algebra A = (A;⊙,→,∨,∧, 1, 0) of type (2, 2, 2, 2, 0, 0)

which satisfies the following conditions:

(i) (A;⊙, 1) is a commutative monoid.

(ii) (A;∨,∧.0, 1) is a lattice with the least element 0 and the greatest element 1.

(iii) The operation ⊙ distributes over the operations ∨ and ∧.

(iv) x⊙ y 6 z if and only if x 6 y → z for any x, y, z ∈ A.

(v) The identity (x→ y) ⊙ x = x ∧ y is valid in A.

For each x, y ∈ A we put

x− = x→ 0,

d(x, y) = (x→ y) ∧ (y → x).

The following basic rules are consequences of the axioms (i)–(v) (cf. e.g. [3]):

(b1) x 6 y ⇔ x→ y = 1.

(b2) x→ (y ∧ z) = (x→ y) ∧ (x→ z).

(b3) d(x, y) = (x ∨ y) → (x ∧ y).

(b4) x⊙ y = 0 ⇔ y 6 x−.

Since 0 is the least element of ℓ(A ), from (b4) we obtain

(∗1) x⊙ 0 = 0 for x ∈ A.

Further, (v) implies (1 → x) ⊙ 1 = 1 ∧ x, hence

(∗2) 1 → x = x for x ∈ A.
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Since x ∨ 1 = 1 for each x ∈ A, in view of (iii) we get, for each x, y ∈ A,

(x⊙ y) ∨ (1 ⊙ y) = 1 ⊙ y,

(x⊙ y) ∨ y = y.

Therefore

(∗3) x⊙ y 6 y and x⊙ y 6 x for each x, y ∈ A.

In view of [3], Section 3 we have

(∗4) x1 6 x2 and y1 6 y2 imply x1 ⊙ y1 6 x2 ⊙ y2 for each x1, x2, y1, y2 ∈ A.

Also, according to [3],

(∗5) the lattice ℓ(A ) is distributive.

Let I be a nonempty set and for each i ∈ I let Ai be a BCR ℓ-monoid. The direct

product
∏

i∈I

Ai is defined in the usual way. If I = {1, 2, . . . , n}, then we apply also the

notation A1 × . . .× An. The elements of
∏

i∈I

Ai are written in the form x = (xi)i∈I ;

xi is the component of x in Ai. We write also xi = x(Ai).

Let A be a BCR ℓ-monoid. An isomorphism of the form

(1) ϕ : A →
∏

i∈I

Ai

is a direct product decomposition of A . If a ∈ A and ϕ(a) = (ai)i∈I then instead of

ϕ(a)(Ai) = ai we write shortly a(Ai) = ai.

For each i ∈ I we put

Ai0 = {a ∈ A : a(Aj) = 1(Aj) for each j ∈ I \ {i}}.

Let xi ∈ Ai, where Ai is the underlying set of Ai. We denote by ϕi(x
i) the element

of Ai0 whose i-th component is xi; i.e., we have

ϕi(x
i)(Ai) = xi.

Let 0i be the least element of ℓ(Ai); we set ϕi(0
i) = ci. Then Ai0 is the interval

[ci, 1] of ℓ(A ). The set Ai0 is closed with respect to the operations ⊙,→,∨ and ∧.

It is easy to verify that the algebra

Ai0 = (Ai0;⊙,→,∨,∧, 1, ci)

is a BCR ℓ-monoid and that the mapping

(2) ϕi : Ai → Ai0

is an isomorphism.
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For each a ∈ A we set

ϕ0(a) = (ϕi(ai))i∈I .

Then in view of (1) and (2) we conclude that the mapping

(3) ϕ0 : A →
∏

i∈I

Ai0

is a direct product decomposition of A .

We say that Ai0 (i ∈ I) are internal direct factors of A and that (3) is an internal

direct product decomposition of A .

For a similar terminology concerning groups cf., e.g., Kurosh [11].

Further, we apply the analogous terminology and notation in the case when instead

of A and (Ai0)i∈I we deal with a bounded lattice L and an indexed system (Li)i∈I

of bounded lattices. The greatest element and the least element of L are denoted

by 1 and by 0, respectively; the symbols 1i and 0i have analogous meanings with

respect to the lattice Li for i ∈ I.

We recall that in the terminology of [10] concerning internal direct product de-

compositions of partially ordered sets, we now deal with the case when the element 1

of the lattice L = ℓ(A ) is taken as the central element in the direct product decom-

position under consideration (according to [10], any element of L could be taken as

central for such decompositions of the lattice L).

3. Two-factor direct product decompositions

Again, let A be a BCR ℓ-monoid and L = ℓ(A ). In this section we assume that

L has a two-factor direct product decomposition

(1) ϕ : L→ L1 × L2.

Since the lattice L is bounded, in view of (1) we obtain that the lattice Li is bounded

as well, where i ∈ {1, 2, }; let 1i and 0i be the greatest and the least element of Li,

respectively. We put

ϕ−1((11, 02)) = p, ϕ−1((01, 12)) = q.

Then we have

(2) p ∨ q = 1, p ∧ q = 0.
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Let t ∈ A, ϕ(t) = (t1, t2). Further, let ϕ0 be as in Section 2. Then ϕ0(t) = (t1, t2),

where

ϕ(t1) = (t1, 1), ϕ(t2) = (1, t2).

Therefore

t1 = p ∨ t, t2 = q ∨ t, t1 ∧ t2 = t.

Applying the notation from Section 2, we have an internal direct product decom-

position

(1′) ϕ0 : L10 × L20.

Clearly, L10 is the interval [p, 1] of L; similarly, L20 is the interval [q, 1] of L.

Lemma 3.1. p⊙ q = 0, p⊙ p = p and q ⊙ q = q.

P r o o f. From the relation p ∧ q = 0 and from (∗3) we obtain p⊙ q = 0.

Further, from p ∨ q = 1 we get

(p⊙ p) ∨ (p⊙ q) = p⊙ 1,

thus p⊙ p = p. Similarly, q ⊙ q = q. �

Lemma 3.2. The interval [p, 1] of ℓ(A ) is closed with respect to the operation⊙.

P r o o f. This is a consequence of the relation p⊙ p = p and of (∗4). �

Lemma 3.3. The interval [p, 1] of ℓ(A ) is closed with respect to the operation→.

P r o o f. Let y, z ∈ [p, 1]. We have to verify that the relation p 6 y → z is valid.

In view of (iv) it suffices to show that p⊙ y 6 z.

According to 3.1, (∗4) and (∗3) we get

p = p⊙ p 6 p⊙ y 6 p,

whence p⊙ y = p. Therefore p⊙ y 6 z. �

Lemma 3.4. The algebra A1 = ([p, 1];⊙,→,∨,∧, 1, p) is a BCR ℓ-monoid.

P r o o f. This is a consequence of 3.2 and 3.3. �

An analogous result holds for the algebra A2 = ([q, 1],⊙,→,∨,∧, 1, q).

1133



Lemma 3.5. For each x ∈ A let us put ϕ1(x) = x ∨ p. Then for each x, y ∈ A

we have

a) ϕ1(x ∨ y) = ϕ1(x) ∨ ϕ1(y);

b) ϕ1(x ∧ y) = ϕ1(x) ∧ ϕ1(y);

c) ϕ1(x⊙ y) = ϕ1(x) ⊙ ϕ1(y).

P r o o f. The relation a) is obvious. In view of the distributivity of ℓ(A ), b) is

valid. The condition (iii) implies that c) holds. �

We clearly have ϕ1(x) = x for each x ∈ [p, 1], hence ϕ1 is a surjective mapping of

A onto [p, 1].

For the mapping ϕ2(x) = x ∨ q we have an analogous result.

Consider the algebra A ∗ = (A;⊙,∨,∧, 1, 0). Let ϕ0 be as in (1′). Then in view

of 3.5 we obtain

Lemma 3.6. The mapping

(1′′) ϕ0 : A
∗ → A

∗

1 × A
∗

2

is an internal direct product decomposition of A ∗ (where A ∗

1 and A ∗

2 are defined

analogously to A ∗).

Now let us deal with the operation →.

Let y, z ∈ A. We put X = {x ∈ A : x⊙ y 6 z}. Then according to (iv) we get

(3) y → z = maxX.

Consider the set

X1 = {t ∈ [p, 1] : t⊙ ϕ1(y) 6 ϕ1(z)}.

Analogously to (3),

(3′) ϕ1(y) → ϕ1(z) = maxX1.

In view of 3.6, we have

Lemma 3.7. Let x ∈ A. Then x ⊙ y 6 z if and only if ϕ1(x) ⊙ ϕ1(y) 6 ϕ1(z)

and ϕ2(x) ⊙ ϕ2(y) 6 ϕ2(z).
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Put X0 = {ϕ1(x) : x ∈ X}. Applying 3.6 again, we get

(3′′) ϕ1(y → z) = maxX0.

Also, ϕ1(x) = x ∨ p ∈ X1 for each x ∈ X , hence

(4) X0 ⊆ X1.

Let v ∈ X1. Hence v ⊙ ϕ1(y) 6 ϕ1(z). Since v ∈ [p, 1], we obtain v = ϕ1(v), thus

(5) ϕ1(v) ⊙ ϕ1(y) 6 ϕ1(z).

We take any fixed t ∈ X . In view of 3.7,

(6) ϕ2(t) ⊙ ϕ2(y) 6 ϕ2(z).

According to Lemma 3.6 there exists u ∈ A such that

ϕ1(u) = ϕ1(v), ϕ2(u) = ϕ2(t).

Then in view of (5), (6) and 3.7 we conclude that u is an element of X . Therefore

ϕ1(u) ∈ X0. Since ϕ1(u) = v, we get v ∈ X0. Hence X1 ⊆ X0. Summarizing, we

have X1 = X0. Thus from (3′) and (3′′) we obtain

Lemma 3.8. ϕ1(y → z) = ϕ1(y) → ϕ1(z).

Similarly, the relation

(7) ϕ2(y → z) = ϕ2(y) → ϕ2(z)

is valid.

Now from Lemma 3.6, Lemma 3.8 and (7) we conclude

Lemma 3.9. The mapping

ϕ0 : A → A1 × A2

is an internal direct product decomposition of A .

We have verified that each two-factor direct product decomposition of the lattice

ℓ(A ) determines a two-factor internal direct product decomposition of the BCR

ℓ-monoid A .
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In the next section we will extend this result to the case when the direct product

decomposition of ℓ(A ) can have more than two factors.

We remark that Lemma 3.9 is related to Proposition 2.1 in Dvurečenskij and

Rach̊unek [4]. Applying the terminology used at the end of Section 2 above, the

differences between the two results are as follows:

1) In 3.9 we deal with internal direct product decompositions having the central

element 1 (i.e., we have direct factors whose underlying sets are of the form [p, 1]

while in 2.1 of [4], the central element is 0 (i.e., the factors are defined on intervals

of type [0, e]).

2) On the direct factor, we work with the original binary operation→ (as defined

in A ), while in 2.1 of [4], new operations →e are introduced.

In connection with the above situation let us also mention the well-known fact

that if L is a distributive lattice with a, b, u, v ∈ L such that

[u, v] = L, a ∧ b = u, a ∨ b = v,

then the mapping ψ : L→ [a, v] × [b, v] defined by

ψ(x) = (x ∨ a, x ∨ b) for each x ∈ L

yields a direct product decomposition of L. The corresponding dual result also holds.

4. The general case

Assume that A is a BCR ℓ-monoid and that for the corresponding lattice ℓ(A )

we have a direct product decomposition

(1) ϕ : ℓ(A ) →
∏

i∈I

Li.

We suppose that I has at least two elements.

Let i be a fixed element of I. Put Ii = {j ∈ I : j 6= i} and

L′

i =
∏

j∈Ii

Lj .

For a ∈ A we put

a(L′

i) = (a(Lj))j∈Ii ,

ϕi(a) = (a(Li), a(Lj))j∈Ii ).
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Then we have a two factor direct product decomposition

(1′) ϕi : ℓ(A ) → Li × L′

i.

We construct Li0, L
′

i0 and ϕ
i
0 as in Section 2. In this way we obtain a two-factor

internal direct product decomposition

(1′′) ϕi
0 : ℓ(A ) → Li0 × L′

i0.

In view of Lemma 3.9 we conclude that

1) the algebra (Li0;⊙,→,∨,∧, 1, vi) is a BCR ℓ-monoid; it will be denoted by

Ai0,

2) the algebra (L′

i0;⊙,→,∨,∧, 1, vi1) is a BCR ℓ-monoid which will be denoted

by A ′

i0;

3) the mapping

(1′′′) ϕi
0 : A → Ai0 × A

′

i0

is an internal direct product decomposition of A .

Let a ∈ A and i ∈ I. By virtue of (1′′′) we can consider the component a(Ai0) of

a in Ai0.

Now we put ϕ0(a) = (a(Ai0))i∈I .

Theorem 4.1. The mapping

ϕ0 : A →
∏

i∈I

Ai0

is an internal direct product decomposition of A .

P r o o f. Let i ∈ I. In view of (1′′′), the mapping

a→ a(Ai0)

is a homomorphism of A onto Ai0. This implies that ϕ0 is a homomorphism of A

into
∏

i∈I

Ai0.

According to (1) and the definitions from Section 2, ϕ0 yields an internal direct

product decomposition of ℓ(A ). Hence the mapping ϕ0 is a bijection. Thus ϕ0 is

an isomorphism of A onto
∏

i∈I

Ai0. Moreover, in view of the above mentioned fact

concerning ℓ(A ), ϕ0 is also an internal direct product decompostion of A . �
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Let ϕ0 be as in 4.1. Further, let

ψ0 : A →
∏

j∈J

Bj0

be another internal direct prodct decomposition ofA . We say that ψ0 is a refinement

of ϕ0 if for each i ∈ I there exists a subset J(i) of J such that we have an internal

direct product decomposition

Ai0 →
∏

j∈J(i)

Bj0.

An analogous terminology will be applied for internal direct product decomposi-

tions of bounded lattices.

Now let ϕ0 and ψ0 be any internal direct product decompositions of A . Then

ϕ0 : ℓ(A ) →
∏

i∈I

ℓ(Ai0),

ψ0 : ℓ(A ) →
∏

j∈J

ℓ(Aj0)

are internal direct product decompositions of the lattice ℓ(A ). According to the

well-known result of Hashimoto [6], any two internal direct product decompositions

of a bounded lattice L have a common refinement. From this it also follows that the

system of all internal direct factors of L is a Boolean algebra. Therefore in view of

Theorem 4.1 we obtain

Theorem 4.2. Any two internal direct product decompositions of a BCR ℓ-

monoid A have a common refinement. The system of all internal direct factors of

A is a Boolean algebra.

Let A be a BCR ℓ-monoid. Consider direct product decompositions

α : A →
∏

i∈I

Ai,

β : A →
∏

j∈J

Bj

of A . We say that α and β are isomorphic if there exists a bijection χ : I → J such

that Ai ≃ Bχ(i) for each i ∈ I.

The following assertion is obvious.
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Lemma 4.3. Let α, β and γ be direct product decompositions of a BCR ℓ-

monoid A . Assume that α is isomorphic to β and γ is a refinement of α. Then there

exists a direct product decomposition δ of A such that δ is a refinement of β and γ

is isomorphic to δ.

If α is a direct product decomposition of a BCR ℓ-monoid A , then we denote by

α0 the corresponding internal direct product decomposition of A (cf. the notation

ϕ and ϕ0 in Section 2). It is obvious that α is isomorphic to α0.

From Theorem 4.1 and Lemma 4.3 we obtain (cf. Fig. 1, where γ0 denotes the

common refinement of α0 and β0)

α α0 β0 β

α′ γ0 β′

A
A
A
AU

�
�

�
��

- �

� �
? ?

Fig. 1

Proposition 4.4. Any two direct product decompositions of a BCR ℓ-monoid

have isomorphic refinements.

5. States on direct products

As above, let A = (A;⊙,→,∨,∧, 1, 0) be a BCR ℓ-monoid.

Definition 5.1 (Cf. [3]). A mapping s of the set A into the interval [0, 1] of

reals is called a state on A if the following conditions are satisfied:

(S1) s(x) + s(x→ y) = s(y) + s(y → x) for each x, y, z ∈ A;

(S2) s(0) = 0 and s(1) = 1.

Assume that s is a state on A . Then in view of Proposition 4.2 in [3], for each

x, y ∈ A we have

(S6) x 6 y ⇒ s(x) 6 s(y);

(S13) s(x) + s(y) = s(x ∨ y) + s(x ∧ y).

Applying the standard terminology of lattice theroy (cf. Birkhoff [1]), from (S13)

we conclude that s is a valuation on the lattice ℓ(A ).

We will use the notation from Section 2 and Section 3.
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Proposition 5.2. Assume that

ϕ0 : A → A10 × A20

is an internal direct product decomposition of A . Let s be a state on A . Then

the mapping s is uniquely determined by the values s(t), where t runs over the set

A10 ∪A20.

P r o o f. The mapping ϕ0 yields also a direct product decomposition of the

lattice ℓ(A ); we have

ϕ0 : ℓ(A ) → ℓ(A10) × ℓ(A20).

Let p and q be as in Section 3; hence ℓ(A10) is an interval [p, 1] of ℓ(A ); similarly

ℓ(A20) is an interval [q, 1] of ℓ(A ).

For x ∈ A we put p1 = p ∨ x and q1 = q ∨ x. Then p1, q1 ∈ A10 ∪A20 and

p1 ∨ q1 = 1, p1 ∧ q1 = x.

Thus in view of (S13) we obtain

s(p1) + s(q1) = 1 + s(x),

s(x) = s(p1) + s(q1) − 1.

�

By the obvious induction, from Proposition 5.2 we get

Proposition 5.3. Assume that

ϕ0 : A → A10 × . . .× A1n

is an internal direct product decomposition of A . Let s be a state on A . Then

the mapping s is uniquely determined by the values s(t), where t runs over the set

A10 ∪ . . . ∪An0.

Let the assumptions of Proposition 5.2 be fulfilled and let p, q be as in the proof

of 5.2. Then p ∨ q = 1 and p ∧ q = 0, whence in view of (S13) we get

(1) s(p) + s(q) = 1.

Further, according to (S6), for each p1 ∈ [p, 1] and each q1 ∈ [q, 1] we have

(2) s(p1) ∈ [s(p), 1], s(q1) ∈ [s(q), 1].
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Having in mind the relations (1) and (2) we consider the following construction.

Assume that r1, r2 are non-negative integers with r1 + r2 = 1.

Suppose that s1 is a mapping of the interval [p, 1] of ℓ(A ) into the interval [r1, 1]

of reals such that for any p1, p2 ∈ [p, 1] we have

s1(p1) + s1(p1 → p2) = s1(p2) + s1(p2 → p1),

s1(p) = r1, s1(1) = 1.

Further, suppose that s2 : [q, 1] → [r2, 1] has analogous properties.

Recall (cf. Section 3) that for x ∈ A we have ϕ0(x) = (x∨p, x∨q). For each x ∈ A

we put

(3) s(x) = s1(x ∨ p) + s2(x ∨ q) − 1.

Proposition 5.4. Let s be as in (3). Then s is a state on A .

P r o o f. By easy calculation we verify that s(0) = 0 and s(1) = 1.

Let x, y ∈ A. Put x ∨ p = p1, x ∨ q = q1, y ∨ p = p2, y ∨ q = q2. In view of 3.9,

(x→ y) ∨ p = (x ∨ p) → (y ∨ p) = p1 → p2.

Analogously we have

(x→ y) ∨ q = q1 → q2, (y → x) ∨ p = p2 → p1, (y → x) ∨ q = q2 → q1.

Therefore

s(x) = s1(p1) + s2(q1) − 1,

s(y) = s1(p2) + s2(q2) − 1,

s(x→ y) = s1(p1 → p2) + s2(q1 → q2) − 1,

s(y → x) = s1(p2 → p1) + s2(q2 → q1) − 1.

Using these relations and the above mentioned assumptions concerning s1 and s2 we

obtain that (S1) holds. �

Similarly to Propositions 5.2 and 5.3, Proposition 5.4 can be generalized for n-

factor direct product decompositions.

Now let us suppose that s is a state on a BCR ℓ-monoid and that

ϕ0 : A →
∏

i∈I

Ai0

is an internal direct product decomposition of A such that the set I is infinite.
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We apply the notation as in the previous section. The case cardA = 1 being

trivial we suppose that cardA > 1; then without loss of generality we can assume

that cardAi0 > 1 for each i ∈ I.

For i ∈ I, vi is the least element of Ai0 and 1 is the greatest element of Ai0. Hence

vi < 1.

We prove the following result:

Proposition 5.5. Let ϕ0 and s be as above. Put

I0 = {i ∈ I : s(vi) = 1}.

Then card(I \ I0) 6 ℵo.

Before proving Proposition 5.5 we need some auxiliary considerations.

Let i ∈ I. There exists qi ∈ A such that

qi(Ai0) = 1, qi(Aj0) = vi for each j ∈ I \ {i}.

Hence qi 6= 0. If i(1) and i(2) are distinct elements of I, then

qi(1) ∧ qi(2) = 0, qi(1) ∨ qi(2) = 1.

Let I0 be as in 5.5. Further, for each n ∈ N we set

In =
{

i ∈ I :
1

n+ 1
< s(qi) 6

1

n

}

.

Thus the sets I0, I1, I2, . . . are mutually disjoint.

Lemma 5.6. Let k be a positive integer. Then the set Ik is finite.

P r o o f. By way of contradiction, assume that the set Ik is infinite. Then there

exists a system of distinct elements {i(k, n)}n∈N belonging to Ik. Let m ∈ N. We

denote

tm = qi(k,1) ∨ . . . ∨ qi(k,m).

Since the elements qi(k,1), . . . , qi(k,m) are mutually orthogonal, from (S13) and by

induction we obtain

s(tm) = s(i(k,1)) + . . .+ s(qi(k,m)).

In view of the definition of Ik,

1

k + 1
< s(qi(k,1)), . . . ,

1

k + 1
< s(qi(k,m)),

whence s(tm) > m/(k + 1). Form > k+1 we get s(tm) > 1, which is a contradiction.

�
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P r o o f of Proposition 5.5. Put I∗ =
⋃

n∈N

In. According to Lemma 5.6 we obtain

card I∗ 6 ℵ0. For each i ∈ I we have

vi ∧ qi = 0, vi ∨ qi = 1.

Then in view of (S13) we get S(vi) + S(qi) = 1, whence

s(vi) = 1 ⇔ s(qi) = 0.

This yields I \ I0 = I∗. Therefore card(I \ I0) 6 ℵ0. �
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