Previous |  Up |  Next

Article

Keywords:
bilinear Hilbert transform; bilinear multipliers; Lorentz spaces
Summary:
We give one sufficient and two necessary conditions for boundedness between Lebesgue or Lorentz spaces of several classes of bilinear multiplier operators closely connected with the bilinear Hilbert transform.
References:
[1] Bennet, C., Sharpley, R.: Interpolation of operators. Pure and applied mathematics vol. 129, Academic Press, Inc., New York (1988). MR 0928802
[2] Calderón, A. P.: Cauchy integrals on Lipschitz curves and related operators. Proc. Natl. Acad. Sci. USA 74 1324-1327 (1977). DOI 10.1073/pnas.74.4.1324 | MR 0466568
[3] Fefferman, C.: Pointwise convergence of Fourier series. Ann. Math. 98 551-571 (1973). DOI 10.2307/1970917 | MR 0340926 | Zbl 0268.42009
[4] Gilbert, J., Nahmod, A.: Boundedness of bilinear operators with non-smooth symbols. Math. Res. Lett. 7 (2000), 767-778. DOI 10.4310/MRL.2000.v7.n6.a9 | MR 1809300
[5] Gilbert, J., Nahmod, A.: Bilinear operators with non-smooth symbols. J. Fourier Anal. Appl. 7 (2001), 437-469. DOI 10.1007/BF02511220 | MR 1845098
[6] Grafakos, L., Li, X.: Uniform bounds for the bilinear Hilbert transform I. Annals of Mathematics 159 (2004), 889-933. DOI 10.4007/annals.2004.159.889 | MR 2113017
[7] Lacey, M.: On the bilinear Hilbert transform. Doc. Math., vol. II 647-656 (1998). MR 1648113 | Zbl 0963.42007
[8] Lacey, M., Thiele, C.: $L^p$ bounds on the bilinear Hilbert transform for $2. Ann. Math. 146 (1997), 693-724. MR 1491450 | Zbl 0946.44001
[9] Lacey, M., Thiele, C.: On Calderón's conjecture. Ann. Math. 149 (1999), 475-496. DOI 10.2307/120971 | MR 1689336 | Zbl 0934.42012
[10] Lacey, M.: The bilinear maximal function maps into $L^p$ for $2/3. Ann. Math. 151 (2000), 35-57. DOI 10.2307/121111 | MR 1745019
[11] Larsen, R.: An introduction to the theory of multipliers, vol. 175. Springer-Verlag (1971). MR 0435738
[12] Muscalu, C., Tao, T., Thiele, C.: Multilinear operators given by singular multipliers. J. Amer. Math. Soc. 15 (2002), 469-496. DOI 10.1090/S0894-0347-01-00379-4 | MR 1887641
[13] Muscalu, C., Tao, T., Thiele, C.: Uniform estimates on multi-linear operators with modulation symmetry. J. Anal. Math. 88 255-309 (2002). DOI 10.1007/BF02786579 | MR 1979774 | Zbl 1041.42013
[14] Thiele, C.: On the bilinear Hilbert transform. Universität Kiel, Habilitation (1998).
Partner of
EuDML logo