
Czechoslovak Mathematical Journal

Francisco Villarroya
Bilinear multipliers on Lorentz spaces

Czechoslovak Mathematical Journal, Vol. 58 (2008), No. 4, 1045–1057

Persistent URL: http://dml.cz/dmlcz/140438

Terms of use:
© Institute of Mathematics AS CR, 2008

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/140438
http://dml.cz


Czechoslovak Mathematical Journal, 58 (133) (2008), 1045–1057

BILINEAR MULTIPLIERS ON LORENTZ SPACES

Francisco Villarroya, Valéncia

(Received October 22, 2006)
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1. Introduction

The bilinear Hilbert transform with parameter α ∈ R is the operator given by

Hα(f, g)(x) =
1

π

p.v.

∫
f(x − t)g(x − αt)

dt

t

initially defined for functions in the Schwartz class. Notice that H0(f, g) = H(f)g

and H1(f, g) = H(fg) where H(f) is the classical Hilbert transform. So Hα can be

seen as an intermediate step between both operators.

The bilinear Hilbert transform has been extensively studied since 1965 when

A.Calderón set the conjecture of its boundedness from L2 × L∞ into L2 while he

was working on the Hilbert transform defined over Lipschitz curves (see [2]). After

several years of research and using original ideas of C. Fefferman [3], M. Lacey and

C.Thiele finally answered this question when they proved the following

The author has been partially supported by grants DGESIC PB98-1246 and BMF 2002-
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Theorem 1.1. For each triple (p1, p2, p3) such that 1 < p1, p2 6 ∞, 1/p1+1/p2 =

1/p3 and p3 > 2/3 and each α ∈ R \ {0, 1} there exists C(α, p1, p2) > 0 for which

‖Hα(f, g)‖p3
6 C(α, p1, p2)‖f‖p1

‖g‖p2

for all f , g in the Schwartz class.

In two papers ([8], [9]) published in 1997 and 1999 respectively. See also [14] for

a unified proof.

Since then a great deal of generalizations and extensions of this seminal work

have appeared such as: [4], [5] and [12] related to the modification of the kernel of

the operator, [6] related to uniform estimates in the same inequality, [10] related to

maximal results, and [13] to uniform estimates with generalized kernels.

The present paper shows two sufficient and one necessary conditions for bound-

edness of different types of bilinear multipliers some of which include the bilinear

Hilbert transform.

2. Preliminaries, notation and definitions

Given a measurable function f we denote its distribution function by mf (λ) =

m({x ∈ R : |f(x)| > λ}) and its nonincreasing rearrangement by f∗(t) = inf{λ >

0: mf (λ) 6 t}. The Lorentz space Lp,q consists of those measurable functions f

such that ‖f‖∗p,q < ∞, where

‖f‖∗p,q =





{
q

p

∫ ∞

0

tq/pf∗(t)q dt

t

}1/q

, 0 < p < ∞, 0 < q < ∞,

sup
t>0

t1/pf∗(t) 0 < p 6 ∞, q = ∞.

The reader is referred to [1] for basic information on Lorentz spaces.

The interpolation result we are going to use is a trilinear version of the Riesz-

Thorin interpolation theorem for tuples of spaces. Since we will use it for positive

integral operators ∫

R

f(x − t)g(x − αt)K(t) dt

where K is a positive function, we state the theorem in this setting.
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Theorem 2.1. Let 0 < pi,j 6 ∞ for i = 1, . . . , n, j = 0, 1, 2, 3. Let T a positive

trilinear integral operator such that T : Lpi,0 × Lpi,1 × Lpi,2 → Lpi,3 is bounded for

i = 1, . . . , n with ‖T ‖i 6 Mi.

Then T : Lp0 ×Lp1 ×Lp2 → Lp3 is bounded for 1/pj =
n∑

i=1

θi/pi,j, for j = 0, 1, 2, 3

where 0 6 θi 6 1 and
n∑

i=1

θi = 1. Moreover, ‖T ‖ 6
n∏

i=1

Mθi

i .

A proof of this theorem for a pair of spaces can be found in [1] page 185 for the

linear case and 202 for the multilinear case. The extension to tuples of spaces is

trivial from that result.

We set some frequently used notations. For every x, y ∈ R we denote the transla-

tion operator by Tyf(x) = f(x − y) and the modulation operator by Myf(x) =

f(x)e2πiyx, while for all p ∈ R and t 6= 0 we denote the dilation operators by

Dp
t f(x) = t−1/pf(t−1x) and Dtf(x) = D∞

t f(x) = f(t−1x). These operators show

certain symmetries when the Fourier transform acts on them. In particular, the

transform of a translation is a modulation, (Tyf )̂ = M−yf̂ , the transform of a mod-

ulation is a translation, (Myf )̂ = Ty f̂ , and the transform of a dilation is its dual

dilation, (Dp
t f )̂ = sign(t)Dp′

t−1 f̂ .

For the dilation operator we trivially have that ‖Dr
t f‖p,q = |t|1/p−1/r‖f‖p,q. Some-

times we will also use the notation Kε for the change of scale normalized to the L1

norm, that is, Kε(x) = ε−1K(ε−1x) = D1
εK(x).

The bilinear operators we are going to work with can be seen as generalizations of

convolution operators. Thus, as in the case of the convolution of a distribution and

a function, they can be defined functionally and distributionally. We will work only

with the functional definition.

Definition 2.1. Let u be a distribution. For every α ∈ R and every f, g ∈ C∞
0

we define the function

Hu,α(f, g)(x) = (u, D−1T−xf · D−α−1T−xg)

for all x ∈ R. We will say that Hu,α is a generalized bilinear Hilbert transform

associated to u and α or just a BHT for short.

In this way, if K is a locally integrable function, for instance, this definition leads

to the expression

(1) HK,α(f, g)(x) =

∫

R

f(x − t)g(x − αt)K(t) dt

which is well defined for all α, x ∈ R and for any bounded functions f, g such that at

least one of them has compact support if α 6= 0 or f has compact support if α = 0.

We give the following
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Definition 2.2. Let α ∈ R and u be a distribution. Let 0 < pi < ∞, 0 <

qi 6 ∞, i = 1, 2, 3. We say that Hu,α is (pi, qi)i=1,2,3 bounded if it can be extended

to a bounded operator from Lp1,q1 × Lp2,q2 into Lp3,q3 . This is possible if there

exists a constant C > 0 depending of u, α and pi, qi such that ‖Hu,α(f, g)‖p3,q3
6

C‖f‖p1,q1
‖g‖p2,q2

, for all f and g in some appropriate dense subspaces.

In the same way that convolution and linear multiplier operators are intimately

related, so are the operators previously defined and the following ones:

Definition 2.3. Let m be a bounded measurable function in R2. For every

x ∈ R and f, g ∈ S we define the operator

Bm(f, g)(x) =

∫

R2

f̂(ξ)ĝ(η)m(ξ, η)e2πi(ξ+η)x dξ dη.

Let pi > 0.

We say thatm is a (p1, p2, p3) multiplier or just a bilinear multiplier if the operator

can be extended to a bounded operator from Lp1 × Lp2 to Lp3 . We denote by

‖ · ‖MBp1,p2,p3
the minimum constant that satisfies the inequality ‖Bm(f, g)‖p3

6

C‖f‖p1
‖g‖p2

for all functions f, g ∈ S.

The relationship between both kinds of operators is the following: if K is, say, an

integrable function then

∫

R

f(x − t)g(x − αt)K(t) dt =

∫

R2

f̂(ξ)ĝ(η)K̂(ξ + αη)e2πi(ξ+η)x dξ dη

and so both operators can be regarded as generalizations of convolution operators or

as generalizations of linear multiplier operators.

We finally state several of their properties related to invariance under traslation,

commutativity and duality:

HTyu,α(f, g) = Hu,α(Tyf, Tαyg),(2)

Hu,α(f, g) = sign(α)HD1
αu,α−1(g, f),(3)

〈h, Hu,α(f, g)〉 = 〈HD−1u,1−α(h, g), f〉.(4)
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3. Three conditions for boundedness

We introduce three results on boundedness which can be summarized as follows.

We first give a necessary condition obtained when we study the operator acting over

Gaussian functions. Then we also give a sufficient condition which is the generaliza-

tion of the Young inequality to this class of non-convolution operators. The third

one is another sufficient condition for the second class of operators we have defined.

3.1. Gaussians looking for necessary conditions. We use the fact that the

BHT over Gaussian functions has a particularly easy expression in order to get

necessary conditions for its boundedness when the kernel is a temperate distribution.

We get in this way two conditions for boundedness: one on the spaces between which

the BHT can be bounded and another one on the kernel itself. We work with Lorentz

spaces just for the sake of generality. We begin with a technical lemma.

Lemma 3.1. Let G ∈ S be such that Ĝ(0) = 1. Let (Gε)ε>0 be an approximate

identity with Gε = D1
εG. Then for all ϕ ∈ S, (Gε ∗ ϕ)ε>0 converges to ϕ in the

topology of the Schwartz class TS .

P r o o f. We need to prove that for every n, m ∈ N, lim
ε→0+

‖(Gε∗ϕ)n,m−ϕn,m‖∞ =

0 where we define ϕn,m(x) = xnϕ(m)(x). If cn,k denote the combinatorial number n

over k then for x ∈ R and ε > 0 we have

xn(Gε ∗ ϕ)(m)(x) = xn(Gε ∗ ϕ(m))(x) =

∫

R

(x − t + t)nGε(t)ϕ
(m)(x − t) dt

=

n∑

k=0

cn,k

∫

R

tkD1
εG(t)(x − t)n−kϕ(m)(x − t) dt

=

n∑

k=0

cn,kεk(D1
ε(Gk,0) ∗ ϕn−k,m)(x)

Thus,

|(Gε∗ϕ)n,m(x)−ϕn,m(x)| 6 |(Gε∗ϕn,m)(x)−ϕn,m(x)|+

n∑

k=1

cn,kεk‖Gk,0‖1‖ϕn−k,m‖∞

and for a = max (n, m), ̺r(ϕ) = sup
m,n6r

‖ϕn,m‖∞

‖(Gε ∗ϕ)n,m −ϕn,m‖∞ 6 ‖Gε ∗ϕn,m −ϕn,m‖∞ + ((ε + 1)n − 1) max
06k6a

‖Gk,0‖1̺a(ϕ).

This proves the result by the main property of an approximate identity.
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Proposition 3.1. Let α < 0 and pi, qi > 0 for i = 1, 2, 3. Let u be a non null

tempered distribution. If Hu,α is bounded from Lp1,q1 ×Lp2,q2 into Lp3,q3 with norm

‖Hu,α‖ then 0 6 1/p1 + 1/p2 − 1/p3 6 1.

In this case, if G(x) = e−πx2

and 1/p = 1/p1 + 1/p2 − 1/p3 we have that û ∗Dp′

λ G

is a uniformly bounded family of functions with

sup
λ>0

‖û ∗ Dp′

λ G‖∞ 6 C‖Hu,α‖

where C is a constant that depends only of α, pi and qi, i = 1, 2, 3.

Remark 3.1. When 1/p1 + 1/p2 = 1/p3 the assertion says that û is a bounded

function with ‖û‖∞ 6 C‖Hu,α‖ which is a known fact for linear multipliers (see

[11]).

P r o o f. Let ω ∈ R, λ > 0, α ∈ R \ {0, 1} and define λ′ = (1 + |α|)−1λ2. Let

f(t) = e2πiωte−λ′
πt2 and g(t) = e−(λ′/|α|)πt2 . An easy computation shows that for

α < 0 we have f(x − t)g(x − αt) = f(x)g(x)f(−t)g(−αt). Thus

Hu,α(f, g)(x) = f(x)g(x)Hu,α(f, g)(0)

which says that the BHT of these Gaussian functions is the product of both functions

times a constant. Since

∣∣Hu,α(f, g)(0)
∣∣‖fg‖p3,q3

= ‖Hu,α(f, g)‖p3,q3
6 ‖Hu,α‖‖f‖p1,q1

‖g‖p2,q2
,

we just need to compute norms in order to get the desired condition:

‖f‖p1,q1
= ‖MωDλ′−1/2G‖p1,q1

= λ′−1/(2p1)‖G‖p1,q1
,

‖g‖p2,q2
= ‖D(λ′/|α|)−1/2G‖p2,q2

= λ′−1/(2p2)|α|1/(2p2)‖G‖p2,q2
,

‖fg‖p3,q3
= ‖MωDλ′−1/2(1+1/|α|)−1/2G‖p3,q3

= λ′−1/(2p3)
(
1 +

1

|α|

)−1/(2p3)

‖G‖p3,q3
,

with

‖G‖pi,qi =
( qi

2pi

)1/qi

Γ
( qi

2pi

)1/qi
( 4

qiπ

)1/(2pi)

where Γ denotes the Gamma function of Euler (see Remark 3.2 below). So

|Hu,α(f, g)(0)|

6 ‖Hu,α‖
‖G‖p1,q1

‖G‖p2,q2

‖G‖p3,q3

|α|1/(2p2)
(
1 +

1

|α|

)1/(2p3)

λ′−
1
2
(1/p1+1/p2−1/p3)

= ‖Hu,α‖
‖G‖p1,q1

‖G‖p2,q2

‖G‖p3,q3

|α|
1
2
(1/p2−1/p3)(1 + |α|)

1
2
(1/p1+1/p2)λ−1/p = Cλ−1/p

for all λ > 0 and ω ∈ R.
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Now we work a little bit on the expression Hu,α(f, g)(0). Since

f(−t)g(−αt) = e−2πiωte−(1+|α|)λ′
πt2 = e−2πiωte−λ2

πt2 = M−ωDλ−1G(t)

we have, using the fact that Ĝ = G and D−1G = G, that

(5) Hu,α(f, g)(0) = (u, M−ωDλ−1G) = (û, TωD1
λG) = (û ∗ D1

λG)(ω),

and we can rewrite the previous result for all λ > 0 and ω ∈ R as

|(û ∗ D1
λG)(ω)| 6 Cλ−1/p.

a) If 1/p < 0 we prove that u ≡ 0 by showing that the family of functions mλ(ω) =

(û ∗ D1
λG)(ω) converges pointwise to zero and distributionally to û when λ tends to

zero.

On the one hand, we see thatmλ are bounded functions (and so locally integrable)

with ‖mλ‖∞ 6 Cλ−1/p 6 C for λ < 1 and lim
λ→0

mλ(ω) = 0 for all ω ∈ R.

On the other hand, since (D1
λG)λ>0 is an approximate identity we have proven in

Lemma 3.1 that {D1
λG ∗ ϕ)}λ>0 converges to ϕ in the topology TS . Thus, by the

continuity of û we have for all ϕ ∈ S

lim
λ→0

(umλ
, ϕ) = lim

λ→0
(û ∗ D1

λG, ϕ) = lim
λ→0

(û, D1
λG ∗ ϕ) = (û, ϕ)

With both facts and the Dominated Convergence Theorem of Lebesgue we have

(û, ϕ) = lim
λ→0

(umλ
, ϕ) = lim

λ→0

∫

R

mλ(ω)ϕ(ω) dω = 0.

b) If 1/p = 0 we still know that mλ define a family of bounded functions with

‖mλ‖∞ 6 C for all λ > 0 that converge distributionally to û when λ tends to zero.

We use this fact to show that û must be a bounded function and that, actually, the

convergence is also pointwise. From the above,

|(û, ϕ)| = lim
λ→0

∣∣∣∣
∫

R

mλ(ω)ϕ(ω) dω

∣∣∣∣ 6 lim
λ→0

‖mλ‖∞‖ϕ‖1 6 C‖ϕ‖1

for all ϕ ∈ S and thus û is a distribution associated to a bounded function. Moreover,

by the property of approximate identity, we have that

lim
λ→0

mλ(ω) = lim
λ→0

(û ∗ D1
λG)(ω) = û(ω)

almost everywhere (at all Lebesgue points of û).
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c) If 0 < 1/p 6 1 our condition says that |(û ∗ Dp′

λ G)(ω)| 6 C for all λ > 0 and

ω ∈ R which is the main statement of the proposition.

We still have that mλ = û ∗ D1
λG define a family of bounded functions that

converges distributionally to û and satisfies ‖mλ‖∞ 6 Cλ−1/p for all λ > 0.

d) If 1 < 1/p we prove directly that u ≡ 0. The previous condition can be written

as

|(û ∗ DλG)(ω)| 6 Cλ1/p′

with p′ < 0. Moreover, since Hu,α is bounded and

translation invariant by the property (2), we have that HTyu,α is also a bounded

operator with the same constant and thus it satisfies |(T̂yu ∗ DλG)(ω)| 6 Cλ1/p′

for

every y, ω ∈ R. With this we can write

lim
λ→0

|(u, TyD
1
λG)| = lim

λ→0
|(T̂−yu, Dλ−1G)|

= lim
λ→0

|(T̂−yu ∗ Dλ−1G)(0)| 6 lim
λ→0

Cλ−1/p′

= 0.

Thus for every ϕ ∈ S we have by the Dominated Convergence Theorem

(u, ϕ) = lim
λ→0

(u, ϕ ∗ D1
λG) = lim

λ→0

∫

R

ϕ(y)(u, TyD1
λG) dy = 0.

Now we deal with the case of α > 0. If α > 1 and p3 > 1 the duality formula (4)

with 1 − α < 0 allows us to apply the former result to HD−1u,1−α in the following

way: if f , g, h are some properly chosen Gaussian functions then

〈
h, Hu,α(f, g)

〉
=

〈
HD−1u,1−α(h, g), f

〉
= HD−1u,1−α(h, g)(0)

〈
hg, f

〉

which, if we assume the operator to be bounded, implies

|HD−1u,1−α(h, g)(0)| 6 ‖Hu,α‖
‖f‖p1,q1

‖g‖p2,q2
‖h‖p′

3
,q′

3∣∣〈hg, f〉
∣∣ = Cλ−1/p.

Thus by (5) and using D−1(f ∗ g) = D−1f ∗ D−1g, D−1û = D̂−1u we have

|(û ∗ D1
λG)(−ω)| = |(D̂−1u ∗ D1

λG)(ω)| = |HD−1u,1−α(h, g)(0)| 6 Cλ−1/p.

From here the same ideas lead to the same conclusion.

Finally, if 0 < α < 1 and p3 > 1, the commutativity formula (3) with α−1 > 1

and the duality formula (4) with 1 − α−1 < 0 allow us to apply the same ideas to

HD−1D1
αu,1−α−1 to get the same conclusion:

〈
h, Hu,α(f, g)

〉
=

〈
h, HD1

αu,α−1(g, f)
〉

=
〈
HD−1D1

αu,1−α−1(h, f), g
〉

= HD−1D1
αu,1−α−1(h, f)(0)

〈
hf, g

〉
,
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which implies

|HD−1D1
αu,1−α−1(h, f)(0)| 6 ‖Hu,α‖

‖f‖p1,q1
‖g‖p2,q2

‖h‖p′

3
,q′

3∣∣〈hf, g〉
∣∣ = Cλ−1/p.

Now, using the fact that Dα(f ∗ g) = Dq
αf ∗ Dq′

α g we get by (5)

|(û ∗ D1
αλG)(−αω)| = |Dα−1(û ∗ D1

αD1
λG)(−ω)| = |(Dα−1 û ∗ D1

λG)(−ω)|

= |( ̂D−1D1
αu ∗ D1

λG)(ω)| = |HD−1D1
αu,1−α−1(h, f)(0)| 6 Cλ−1/p

and we finish by the same ideas as before.

Remark 3.2. Since G is even and non-increasing in [0,∞), we know that G∗ =

D2G and so we can compute ‖G‖q1
p1,q1

as follows

q1

p1

∫ ∞

0

tq1/p1e−
1
4
q1πt2 dt

t
=

q1

2p1

( 4

q1π

)q1/(2p1)
∫ ∞

0

tq1/(2p1)e−t dt

t

=
q1

2p1

( 4

q1π

)q1/(2p1)

Γ
( q1

2p1

)
.

3.2. Bilinear Young inequality. The next result is the generalization of the

Young inequality to our bilinear non-convolution operators. We pay now special

attention to the dependence of the constants on the parameter α. In order to deal

with a more general and symmetric operator, we change a little bit its definition.

For the next proposition we let BHT be the operator

HK,α,β(f, g)(x) =

∫

R

f(x − αt)g(x − βt)K(t) dt

defined for all α, β, x ∈ R and f, g ∈ S.

Proposition 3.2 (Bilinear Young inequality). Let p0 > 1. If K ∈ Lp0 then

HK,α,β is a bounded operator from Lp1 × Lp2 to Lp3 with pi > 1 for i = 1, 2, 3 and

p−1
1 + p−1

2 + p−1
0 = 1 + p3

−1, and all α, β ∈ R \ {0} such that α 6= β. Moreover,

‖HK,α,β(f, g)‖p3
6 Cα,β,p0,p1,p2

‖K‖p0
‖f‖p1

‖g‖p2
.

Remark 3.3. Notice that p−1
1 +p−1

2 −p−1
3 = p′0

−1
∈ [0, 1] as Proposition 3.1 says it

must be. See also that this condition can be rewritten as p−1
1 +p−1

2 +p′3
−1

= 1+p′0
−1

and so the point (p−1
1 , p−1

2 , p′3
−1

) ∈ R3 belongs to the plane x + y + z = 1 + p′0
−1

with 1 + p′0
−1

∈ [1, 2].
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P r o o f. Let p > 1, f, g, h, K ∈ S and

I =

∣∣∣∣
∫

R

h(x)

∫

R

f(x − αt)g(x − βt)K(t) dt dx

∣∣∣∣.

We denote here fa,b(x, t) = f(ax+bt). By the Hölder inequality and some changes of

variables I 6 ‖f1,−αg1,−β‖Lp(R2)‖K0,1h1,0‖Lp′(R2) = |α−β|−1/p‖f‖p‖g‖p‖K‖p′‖h‖p′ ,

i.e.

(6) ‖HK,α,β(f, g)‖p 6 |α − β|−1/p‖f‖p‖g‖p‖K‖p′;

I 6 ‖K0,1g1,−β‖Lp(R2)‖f1,−αh1,0‖Lp′(R2) = |α|−1/p′

‖f‖p′‖g‖p‖K‖p‖h‖p′ , i.e.

(7) ‖HK,α,β(f, g)‖p 6 |α|−1/p′

‖f‖p′‖g‖p‖K‖p;

I 6 ‖f1,−αK0,1‖Lp(R2)‖g1,−βh1,0‖Lp′(R2) = |β|−1/p′

‖f‖p‖g‖p′‖K‖p‖h‖p′ , i.e.

(8) ‖HK,α,β(f, g)‖p 6 |β|−1/p′

‖f‖p‖g‖p′‖K‖p.

We associate each bound of the operator from Lp1 × Lp2 to Lp3 to the point

(p−1
1 , p−1

2 , p′3
−1) ∈ R3 in the plane x + y + z = 1 + p−1. In this way and taking

the values p = 1 and p = ∞ in each of the three previous inequalities we consider

the extremal points (1, 1, 0), (0, 0, 1) (from the first one), (0, 1, 0), (1, 0, 1) (from

the second), (1, 0, 0) and (0, 1, 1) (from the third). In this way, by using trilinear

interpolation between two spaces iteratively we get the bounds on the surface of the

convex hull of the previous six points, that is, on the surface of the octahedron drawn

in the following diagram

1

|α|−1

1

|α − β|−1

1

|β|−1

|α
| −

1/
p
′

3|α
−

β
| −

1/
p
2

|β
|−

1/
p

′

3
|α
−

β
|−

1/
p 1

|α|−1/p1 |β|−1/p2

α|−1/p′

2 |β|−1/p′

1 |α − β|−1/p3

|α|−1/p′

0 |β|−1/p′

0

|α − β|−1/p′

0
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where we write the constants of boundedness in each vertex and each face. We

show how to get one of them: from (7) and (8) we know that ‖HK,α,β(f, g)‖∞ 6

|α|−1‖f‖1‖g‖∞‖K‖∞, and ‖HK,α,β(f, g)‖∞ 6 |β|−1‖f‖∞‖g‖1‖K‖∞, so we have

‖HK,α,β(f, g)‖∞ 6 |α|−1/p|β|−1/p′

‖f‖p‖g‖p′‖K‖∞.

In the same way, from (7) and (6) ‖HK,α,β(f, g)‖∞ 6 |α|−1‖f‖1‖g‖∞‖K‖∞ and

‖HK,α,β(f, g)‖∞ 6 ‖f‖∞‖g‖∞‖K‖1, we get

‖HK,α,β(f, g)‖∞ 6 |α|−1/p‖f‖p‖g‖∞‖K‖p′.

Interpolating both cases we get

‖HK,α,β(f, g)‖∞ 6 |α|−1/p|β|−1/q1‖f‖p‖g‖q1
‖K‖q2

with q−1
1 + q−1

2 = p′
−1
. Using again (6), ‖HK,α,β(f, g)‖1 6 |α−β|−1‖f‖1‖g‖1‖K‖∞,

we finally have

‖HK,α,β(f, g)‖p3
6 |α|−1/p1 |β|−1/p2 |α − β|−1/p3‖f‖p1

‖g‖p2
‖K‖p0

,

where p−1
3 = θ, p−1

1 = (1 − θ)p−1 + θ, p−1
2 = (1 − θ)q−1

1 + θ and p−1
0 = (1 − θ)q−1

2 ,

which is the stated result since p−1
1 + p−1

2 + p−1
0 = 1 + p−1

3 .

Now in order to get bounds in the interior of the octahedron we use interpolation

between six spaces. In this way, each point p = (p−1
1 , p−1

2 , p′−1
3 ) can be written as

the convex linear combination of the six vertices in the following way

p = (λ2 + p−1
3 − p−1

2 )(1, 0, 0) + (λ1 + p−1
3 − p−1

1 )(0, 1, 0) + (p′−1
3 − λ1 − λ2)(0, 0, 1)

+ λ1(1, 0, 1) + λ2(0, 1, 1) + (p−1
1 + p−1

2 − p−1
3 − λ1 − λ2)(1, 1, 0),

for every λ1, λ2 ∈ [0, 1] such that max(p−1
1 − p−1

3 , 0) 6 λ1, max(p−1
2 − p−1

3 , 0) 6 λ2

and λ1 + λ2 6 min(p′−1
3 , p′−1

0 ). We denote by D such non empty triangle (notice

that p−1
i − p−1

3 6 p−1
1 + p−1

2 − p−1
3 = p′0

−1
6 1 and max(p−1

1 − p−1
3 , 0) + max(p−1

2 −

p−1
3 , 0) 6 min(p′−1

3 , p′−1
0 )). Also notice that this decomposition implies this other

one for p̃ = (p−1
1 , p−1

2 , p−1
3 )

p̃ = (λ2 + p−1
3 − p−1

2 )(1, 0, 1) + (λ1 + p−1
3 − p−1

1 )(0, 1, 1)

+ (1 − p′−1
3 + λ1 + λ2)(0, 0, 0) + λ1(1, 0, 0) + λ2(0, 1, 0)

+ (p−1
1 + p−1

2 − p−1
3 − λ1 − λ2)(1, 1, 1)

in order to interpolate. So, using Theorem 2.1 we get

‖HK,α,β(f, g)‖p3
6 |α|−λ1 |β|−λ2 |α − β|−(1/p′

0−λ1−λ2)‖f‖p1
‖g‖p2

‖K‖p0
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for every λ1, λ2 ∈ D, and we want now to minimize. Since D is a convex domain and

F (x, y) = (|α||α − β|−1)−x(|β||α − β|−1)−y is a convex function in D, the minimal

constant is attained in one of the three vertices of the triangle:

(max(p−1
1 − p−1

3 , 0), max(p−1
2 − p−1

3 , 0)),

(max(p−1
1 − p−1

3 , 0), min(p′−1
1 , p−1

2 , p′−1
3 , p′−1

0 )),

(min(p−1
1 , p′−1

2 , p′−1
3 , p′−1

0 ); max(p−1
2 − p−1

3 , 0))

that is,

‖HK,α,β(f, g)‖p3
6 Cα,β,p1,p2,p0

‖f‖p1
‖g‖p2

‖K‖p0
,

where Cα,β,p1,p2,p0
is the minimum of the three quantities:

|α|−max(p−1

1
−p−1

3
,0)|β|−max(p−1

2
−p−1

3
,0)|α − β|−min(p−1

1
,p−1

2
,p−1

3
,p′

0

−1),

|α|−max(p−1

1
−p−1

3
,0)|β|−min(p′

1

−1,p−1

2
,p′

3

−1,p′

0

−1)|α − β|−max(p−1

2
−p′

1

−1,0),

|α|−min(p−1

1
,p′

2

−1,p′

3

−1,p′

0

−1)|β|−max(p−1

2
−p−1

3
,0)|α − β|−max(0,p−1

1
−p′

2

−1),

which, on the surface of the octahedron, are the same bounds as we already had (in

fact, the three bounds coincide on each face).

3.3. The third condition. The last result gives a sufficient condition for bound-

edness of bilinear multipliers. It gives a condition on the symbol of the operator

instead of the kernel.

Proposition 3.3. Let m ∈ Lq(R2) with 1 6 q 6 4. Then m is (p1, p2, p3)-

multiplier for all exponents such that 1 6 p1, p2, p
′
3 6 min(2, q), q /∈ {p1, p2, p

′
3} and

p−1
1 + p−1

2 + p′−1
3 = 1 + 2q−1. Moreover, ‖m‖MBp1,p2,p3

6 ‖m‖q.

P r o o f. By duality it is enough to prove that for every f, g, h ∈ S

I =

∣∣∣∣
∫

R2

f̂(ξ)ĝ(η)m(ξ, η)ĥ(−ξ − η) dξ dη

∣∣∣∣ 6 Cm‖f‖p1
‖g‖p2

‖h‖p′

3
.

If q = 1 then I 6 ‖m‖1‖f̂‖∞‖ĝ‖∞‖ĥ‖∞ 6 ‖m‖1‖f‖1‖g‖1‖h‖1.

If q > 1, we define p̃ = (p̃1, p̃2, p̃
′
3) by

p̃1 =
p1(q − 1)

q − p1
, p̃2 =

p2(q − 1)

q − p2
, p̃′3 =

p′3(q − 1)

q − p′3
,

which satisfy:

1 6 p̃1, p̃2, p̃
′
3 6 ∞, p̃′i =

p′i
q′

, i = 1, 2, p̃3 =
p3

q′
,

1

p̃′1
+

1

p̃′2
+

1

p̃3
= 2.
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Then, by the Hölder, the Young and the Hausdorff-Young inequalities we have

I 6 ‖m‖q

( ∫

R2

|f̂(ξ)|q
′

|ĝ(η)|q
′

|ĥ(−ξ − η)|q
′

dξ dη

)1/q′

= ‖m‖q(|f̂ |
q′

∗ |ĝ|q
′

∗ |ĥ|q
′

)(0)1/q′

6 ‖m‖q‖|f̂ |
q′

∗ |ĝ|q
′

∗ |ĥ|q
′

‖1/q′

∞ 6 ‖m‖q(‖|f̂ |
q′

‖p̃′

1
‖|ĝ|q

′

‖p̃′

2
‖|ĥ|q

′

‖p̃3
)1/q′

= ‖m‖q‖f̂‖p̃′

1
q′‖ĝ‖p̃′

2
q′‖ĥ‖p̃3q′ = ‖m‖q‖f̂‖p′

1
‖ĝ‖p′

2
‖ĥ‖p3

6 ‖m‖q‖f‖p1
‖g‖p2

‖h‖p′

3
.

Remark 3.4. Although K ∈ Lp for some 1 < p 6 2, none of the functions

m(ξ, η) = K̂(αξ + βη) belongs to Lq(R2) for 1 6 q 6 4. So, this result is neither a

generalization nor a special case of Proposition 3.2.
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