Previous |  Up |  Next

Article

Keywords:
$n$-place function; algebra of functions; Menger algebra; $(2,n)$-semigroup
Summary:
Abstract characterizations of relations of nonempty intersection, inclusion end equality of domains for partial $n$-place functions are presented. Representations of Menger $(2,n)$-semigroups by partial $n$-place functions closed with respect to these relations are investigated.
References:
[1] Dudek, W. A., Trokhimenko, V. S.: Functional Menger ${\cal P}$-algebras. Commun. Algebra 30 (2002), 5921-5931. DOI 10.1081/AGB-120016022 | MR 1941932 | Zbl 1018.20057
[2] Dudek, W. A., Trokhimenko, V. S.: Representations of Menger $(2,n)$-semigroups by multiplace functions. Commun. Algebra 34 (2006), 259-274. DOI 10.1080/00927870500346255 | MR 2194765 | Zbl 1092.20051
[3] Dudek, W. A., Trokhimenko, V. S.: Menger algebras of multiplace functions. Russian Centrul Ed. USM. Khishinev, 2006, ISBN 978-9975-70-621-6. MR 2292134 | Zbl 1115.08001
[4] Mann, H. B.: On orthogonal Latin squares. Bull. Amer. Math. Soc. 50 (1944), 249-257. DOI 10.1090/S0002-9904-1944-08127-5 | MR 0010401 | Zbl 0060.32307
[5] Novák, V., Novotný, M.: Transitive ternary relations and quasiorderings. Arch. Math. (Brno) 1/2 (1989), 5-12. MR 1189193
[6] Riguet, J.: Relations binaires, fermetures, correspondances de Galois. Bull. Soc. Math. France 76 (1948), 114-155. DOI 10.24033/bsmf.1401 | MR 0028814 | Zbl 0033.00603
[7] Schein, B. M.: A relation of co-definability on semigroups of functions. Russian Ordered sets and lattices 1 (1971), 86-89 (Izdat. Saratov. Gos. Univ.). MR 0379727
[8] Schein, B. M.: Projection partitions of function semigroups. Math. Rep. Acad. Sci., R. Soc. Canada 1 (1979), 67-70. MR 0519525 | Zbl 0404.20058
[9] Schein, B. M.: Lectures on semigroups of transformations. Amer. Math. Soc. Translat. 113 (1979), 123-181. DOI 10.1090/trans2/113/06 | Zbl 0404.20057
[10] Schein, B. M., Trohimenko, V. S.: Algebras of multiplace functions. Semigroup Forum 17 (1979), 1-64. DOI 10.1007/BF02194309 | MR 0521147 | Zbl 0397.08001
[11] Sokhatskij, F. N.: An abstract characterization of $(2,n)$-semigroups of $n$-ary operations. Russian Mat. Issled. 65 (1982), 132-139. MR 0669748
[12] Trokhimenko, V. S.: Ordered algebras of multiplace functions. Russian Izv. Vyssh. Uchebn. Zaved. Matematika 1 (1971), 90-98. MR 0285461
[13] Trokhimenko, V. S.: Abstract characterizations of some algebras of multiplace functions. Russian Izv. Yyssh. Uchebn. Zaved. Matematika 4 (1971), 87-95. Zbl 0221.08002
[14] Trokhimenko, V. S.: Characterization of the co-definability relation on ordered algebras of multiplace functions. Russian Izv. Vyssh. Uchebn. Zaved. Matematika 9 (1977), 80-88.
[15] Trokhimenko, V. S.: Stationary subsets and stabilizers of restrictive Menger P-algebras of multiplace functions. Algebra Universalis 44 (2000), 129-142. DOI 10.1007/s000120050175 | MR 1803079 | Zbl 1014.08004
[16] Yakubov, T.: On $(2,n)$-semigroups of $n$-ary operations. Russian Bull. Akad. Ştiinţa SSR Moldov. 1 (1974), 29-46.
Partner of
EuDML logo