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1. INTRODUCTION

Investigation of partial multiplace functions by algebraic methods plays an impor-
tant role in modern mathematics where we consider various operations on sets of
functions which are naturally defined. The basic operation for n-place functions is
a superposition (composition) O of n + 1 such functions, but there are some other
naturally defined operations which are also worth considering. In this paper we con-
sider binary Mann’s compositions E}?, ..., ® for partial n-place functions introduced

n

in [4], which have many important applications for the studies of binary and n-ary
operations. Algebras of n-place functions closed with respect to these compositions
were investigated, for example, in [11] and [16].
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2. PRELIMINARIES AND NOTATIONS

Let A™ be the n-th Cartesian product of a set A. Any partial mapping from A"
into A is called a partial n-place function. The set of all such mappings is denoted
by ZF (A", A). On % (A™, A) we define the Menger superposition (composition) of n-
place functions O: (f,g1,...,9n) — flg1...9n] and n binary compositions G?, ey @

n

putting

(1) f[gl "'gn:l(alﬂ"'7an) - f(gl(a’17"'7an)7"'7gn(a’1)"'7an))7
(2) (feiég)(al,...,an) = fla1,...,ai—1,9(a1,...,Gpn), Qit1,- -, 0n),

for all f,9,91,...,9n € F(A", A) and (ai,...,a,) € A", where the left- and the
right-hand sides of (1) and (2) are defined or not defined simultaneously. Since, as
it is not difficult to verify, each composition @ is an associative operation, algebras

of the form (@;?,...,%) and (@;0,619,...,6;), where & C F(A", A), are called
respectively (2,n)-semigroups and Menger (2,n)-semigroups of n-place functions.

According to the general convention used in the theory of m-ary systems, the
sequence x;, i1, ..., T, where ¢ < j, can be written as xz (for ¢ > j it is the empty
symbol). With this convention (1) and (2) can be written as

florl(ar) = f(g1(a7), -, gn(a1)),
(f®g)(al) = flar", g(al), aiyy).

(2

An algebra (G;0) with one (n 4 1)-ary operation o satisfying the identity

0(0(1‘8), y?) = O(J?(), 0(331, y?)? RS O(J?n, y?))

is called a Menger algebra of rank n (cf. [1], [10]). Such operation is called superasso-
ciative and by many authors is written as o(xf) = xo[2}]. Such notation is motivated
by the fact that the composition O of n-place functions is, as it is not difficult to see,
an (n + 1)-ary superassociative operation. In this convention the above identity has
the form

3) zolat][yr'] = wola[yr] . - wnlyr]];

where zo[z]][y}] must be read as (zo[z}])[y}]-

It is clear that an arbitrary semigroup is a Menger algebra of rank 1. Some prop-
erties of Menger algebras can be characterized by its diagonal semigroup (see [10]),
i.e., the semigroup (G, ), where z xy = o(z,y,...,y).
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Let {619, cee E?L} be the collection of associative binary operations defined on G.
According to [11] and [16], an algebra (G; 619, ol 62) is called a (2,n)-semigroup. By
a Menger (2,n)-semigroup we mean an algebra (G;O,Q?, .. .,E?L), where (G;o) is a
Menger algebra of rank n and (G; ?, e Q;) is a (2,n)-semigroup. Any homomor-
phism of a (Menger) (2, n)-semigroup onto some (Menger) (2, n)-semigroup of n-place
functions is called a representation by n-place functions. A representation is faithful
if it is an isomorphism (cf. [10]).

All expressions of the form (...((z @ y1) ® y2)...) ® ys, where @ are operations
from the collection {619, ceey 62} and z, ylll, e ,25 € G, a;é written as zxk QY1 D ... 6? Ys

i1 s
or, in the abbreviated form, as méyf The symbol uz(éxf), in the case i =
11 71
i and © # i, for all p < k£ < s, denotes the element x;, éa ri,,. In any
Tk+1
other case it is the empty symbol. For example, 1 (@@ yd 2D udv) = udv,
2 273 1 3 3
Wp(PrOYO20uUdV) =2PYD2zOudV, u3(DrxPYP2zHudv) = 2D uDv. The
2 273 1 3 2”3 1 3 2 273 1 3 1 3
symbol s (B x Dy dzdudv) is empty.
2 273 1 3
In [11] it is proved that a (2,n)-semigroup (G;@®,...,®) has a faithful represen-
1 n

tation by n-place functions if and only if it satisfies the implication®

(4)

~.

is Jk is Jk
(m(@ 1) = i yf)) — gl =g &y
i1 J1 21 J1

=1

for all g,x1,...,25,91,...,yx € G. A Menger (2,n)-semigroup has a faithful repre-
sentation if and only if it satisfies (4) and

(5) (0@ y)[2F] = alei~ylat] 22l
(6) 2] @ 2 = 2l(182) ... (v ©2))
(7) xég'yf:x[u1<§»§yf>...un<e§yf>1,

where {i1,...,is} ={1,...,n} and i = 1,...,n. In the sequel, any (Menger) (2, n)-
semigroup satisfying the condition (4) (respectively, (4), (5), (6) and (7)) will be
called representable.

1 ' We use the following notation: ~-negation, A-conjunction, V-disjunction, —-implication,
—-equivalence, V-universal quantifier, 3-existential quantifier.
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Let @ be some set of n-place functions, i.e., ® C % (A", A). Counsider the following
three binary relations on &:

{(f,9) € ® x ®|pry f Cpryg},
{(f,g)é@X<I>|pr1fﬂprlg7é(Z)},
{(f,g9) € ® x ®|pry f=pr, g},

X
7y
us

)
Il

where pry f is the domain of f, called respectively: inclusion of domains, co-
definability and equality of domains.

Abstract characterizations of such relations for semigroups of transformations were
studied in [7], [8], [9] and for Menger algebras of n-place functions in [12], [13], [14].
We characterize these relations in (2, n)-semigroups and in Menger (2, n)-semigroups
of n-place functions.

Consider a representable (Menger) (2, n)-semigroup (G;GIB, .. ,EE) (respectively,

(G;0,®,...,@)) and its representation P by n-place functions. On the set G we
1 n

define three binary relations:

xp = {(g91,92) | pry P(g1) C pry P(g2)},
vp = {(91,92) | pry P(g1) Npry P(g2) # 0},
mp = {(91,92) | pr; P(91) = pry P(g2)}.

It is not difficult to see that xp is a quasi-order, i.e., xp is reflexive and transitive
relation, and 7wp is an equivalence such that 7p = xyp N Xg,l, where X}l = {(b,a) |
(a,b) € xp}.

Let (P;);c; be a family of representations of a representable (2,n)-semigroup
(G;®,...,®) (respectively, representable Menger (2, n)-semigroup (G;o0,®,...,®))

1 n 1 n
by n-place functions defined on sets (4;);c; respectively, where the sets A; are pair-
wise disjoint. The sum of (P;);es is the mapping P: g — P(g), denoted by > P;,
i€l
where P(g) is an n-place function on A = |J A;, such that P(g) = | Pi(g) for
icl il

every g € G. The sum of any family of representations by n-place functions is also
a representation by n-place functions and

(8) XP:nXP” ’)’P:UVP“ WP:ﬂWPLw
iel iel iel
Let 0 be a zero of a (2,n)-semigroup (G;®,...,®) (respectively, Menger (2,n)-
1 n
semigroup (G;0,®,...,d)), i.e.,, 0B g = g®0 = 0 (respectively, 0P g = gP0 =0
1 i i i i

n

and 0[g}] = glgi™! 0gf ] =0)foralli=1,...,nand g,g1,...,9, € G. We say that
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a binary relation o C G x G is 0-reflexive, if (g, g) € o for all g € G\{0}. A symmetric
relation ¢ which is reflexive if 0 € pr; o, and O-reflexive if 0 & pr, o, is called a 0-quasi-
equivalence. If G does not contains a zero, then by a 0-quasi-equivalence relation we
understand a reflexive and symmetric binary relation.

A binary relation A on a Menger (2, n)-semigroup (G;o0,®,...,®) is called:

1 n
e [-reqular, if

(9) Ay — xfz7]Ay[],
(10) TAy — O zAydz
foralli=1,...,nand z,y, 2,21, ..., 2, € G,

e [-cancellative, if

(11) zlz1]Ayer] — z Ay,
(12) T®zAy®z — Ay
3 K3
foralli=1,...,nand z,y, 2,21, ..., 2, € G,

e v-negative, if

(13) x[y?]Ayza Z:1a7n7
is is

(14) T @ 27 Ap(D 27)
11 11

for all z,y1,...,Yn,21,...,2s € G and j € {i1,...,4s}.

In the case of (2, n)-semigroups these relations are defined by (10), (12) and (14),
respectively.?

3. PROJECTION REPRESENTABLE RELATIONS ON MENGER (2,n)-SEMIGROUPS

Let 4 = (G;o, 619, ceey E?L) be a representable Menger (2,n)-semigroup and let 1y,
~ and 7 be binary relations on G. We say that the triplet (x,~,7) is (faithful)
projection representable for ¢ if there exists a (faithful) representation P of ¢ by
n-place functions for which x = xp, v = yp and m = 7wp. Analogously we define
projection representable pairs and separate relations.

In the sequel, instead of (g1,92) € X, (91,92) € v and (g1,92) € 7 we will write
g1 C g2, g1 T g2 and g1 = gs, respectively.

2If A is a quasi-order relation, then the condition (13) is equivalent to condition
(V) (Vy) (Vu) (V) (Vi) (2, u[w]iy]) € A — (z,9) € A),
where u,z,y € G, we G", i €{1,...,n} and u[w|;y] = u[wiflyw;ﬂrl] (see [10]).
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Theorem 1. A triplet (x,y, ) of binary relations on G is projection representable
for a representable Menger (2, n)-semigroup ¢ if and only if the following conditions
are satisfied:

(a) x is an l-regular and v-negative quasi-order,
(b) v is an l-cancellative 0-quasi-equivalence,

(c) m=xnNx"! and

(15) hiTho NhiCgr ANhaCgo — g1 192

for all hl,hg,gl,gg € G.

Proof. Necessity. Let (®;0, 6?, ceey E?L) be a Menger (2, n)-semigroup of n-place
functions determined on the set A. Let us show that the triplet (xo, Vs, 7o) satisfies
all the conditions of the theorem.

At first we prove the condition (a). The relation x¢ is obviously a quasi-order. Let
fig,h1,... hy € ® and (f,g) € xa, i.e., pr; f C pryg. Suppose that a € pry f[h?]
for some a € A™. Then {f[h7](a)} # 0, i.e., {f(hi(a),...,hn(a))} # 0. Thus
(h1(@),...,hn(a)) € pry f and, consequently, (hi(a),...,h,(a)) € pryg. Therefore
{g(h1(@), ., hn(@)} # 0, whence {glh7](@)} # 0, i.e., @ € pr, glhy]. So, pr, f[hY] C
pr; g[hY], which implies (f[h7],g[hT]) € x&. Similarly we can prove that for all
f,9,he®andi=1,...,n, from (f,g) € xo it follows that (f @ h,g® h) € xo. This
means that the relation y¢ is [-regular. The proof of the v—neéativit; is analogous.

To prove (b) let © be a zero of a Menger (2,n)-semigroup (@;O,Q?, .. ,@L) If
© # (), then pr; © # ), whence (0, 0) € v3. Thus © € pry 7s. So, in this case 7o is
reflexive. For © = () we have pr; © = (). Therefore © ¢ pry ve, i.e., (f, f) € 7o for
every f # ©. Hence 7g is O-reflexive. Since 74 is symmetric, the above means that
v is a ©-quasi-equivalence. If ® does not contain a zero, then g is a reflexive and
symmetric binary relation.

Suppose now that (f[h}], g[h}]) € 7o for some f,g € @, hy,...,h, € ®. Then
pry f[AT] N opry g[ht] # 0, ie., there exists a € A™ such that a € pr; f[h}] and
a € pry g[hY]. Therefore {f[h}](a)} # 0 and {g[h7](a)} # 0. Thus {f(hi(a),...,
hn(a))} # 0 and {g(hi(a),...,hn(a))} # 0, which shows that (hi(a),...,h,(a)) €
pry f Npryg. So, (f,g) € va. Analogously, for f,g,h € ®, i = 1,...,n, from
(f®h,g®h) € 7o it follows that (f,g) € ys. So, vs is I-cancellative.

Szince iIi (¢) the first condition is obvious, we prove (15) only. For this let (hy, he) €
Yo, (h1,91) € xo and (ha, g2) € xo for some hq, ha, g1,92 € ®. Then pry hiNpry ho #
0, pr; hy C pry g1 and pry he C pry g2, whence () # pry hy N pry he C pry g1 N pry go.
Thus pry g1 Npry g2 # 0, ie., (91,92) € Yo, which proves (15) and completes the
proof of the necessity of the conditions formulated in the theorem. O
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To prove the sufficiency of these conditions we must introduce some additional
constructions. Consider the triplet (x,~,7) of binary relations on a representable
Menger (2,n)-semigroup 4 = (G;o0,®,...,®) satisfying all the conditions of the

1 n

theorem. Let eq,...,e, be pairwise different elements not belonging to G. For all
Zi,...,Ts € G, 1 = 1,...,n, and operations @, ..., ® defined on G, we denote by
11 1s

u;"(é z%) an element of G* = GU{ey,...,e,} such that
21

is . . . .
uz(@xi) lflé{ll,...,ZS},
11

i o
Mz’(@xl) =
“ e; if i {ir,...,is}.

Consider the set 2A* = G™ Uy U {(e1,...,en)}, where pis the collection of all
n-tuples (z1,...,x,) € (G*)™ for which there exists y1,...,ys € G and i1,...,i, €

{1,...,n} such that x; = u;“(éyf) Let (h1,h2) € G? be fixed. For each g € G we
21
define a partial n-place function P, 5,)(g): 2* — G such that

hi T g[z}] V he T glxt] if 27 € G™,
hiCgV hyCyg if 27 = €7,
i i ) L s
MCgdyi Vh Cgdy] if o =pj(Dyi),
xt € pry P(h17h2)(g) — i1 i1 i1
i=1,...,n, for

some y§ € G®and

21,15 € {1,...,’[1}.
For 7 € pry P, n,)(9) We put

glzt]  if 2t € G,

g if {E? = e?’
n if xlzu:(ééyf)’

(16) Pihy hoy(9)(2]) = 5 D

Z.: 1,...,7’L7 for

some yj € G° and

i1 is€{1,...,n}.

Let us show that P, 1,) is a representation of ¢ by n-place functions.
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Proposition 1. The function Py, 5,)(g) is single-valued.

Proof. Let 27 € pry Py, p,)(9), where g,hi,hy € G are fixed. Since for
¥ € G™ and z7 = el the valug of Py, hoy(9)(27) is uniquely determined, we verify

only the case when z; = u;“(éyf), i =1,...,n, for some yj € G°. If for some
i1
J
2¥ € G¥ and j1,...,5k € {1,...,n} we have also ; :uz‘(ézf),i: 1,...,n, then
J1

is Jk is
ui(é y3) = m(E_Bk 2¥) for every i = 1,...,n, which, according to (4), implies g éa Y3 =
21 J1 21
J
g Gg 2. This means that also in this case P, 5,)(9)(2}) is uniquely determined.
J1
Thus, the function P, ,)(g) is single-valued. O

Proposition 2. For all g,g1,...,9n, h1,he € G we have

Py 1) (9197]) = Piny ho) (9) [Phy ha) (91) « - - Pi o) (n)]-

Proof. Let g,g1,...,9, € G and a7 € pry Py, 4,)(glg7]). If 27 € G, then

hi C glg?]l2T] V he T glg7][z?],

whence, applying the superassociativity, we obtain

(17) hi C glgilzy] .. gn[zV]] V ha C glgr[z7]. .- gn[2T]]-
This together with the v-negativity of y implies

(18) hi T gi[z7] V he T gi[2}], i=1,...,n.

(From (17) it follows that (gi[27], ..., gn[2]]) € Pry Py hy)(9), from (18) that 27 €
pry Py hoy(gi), i =1,...,n. So, if 27 € G, then

(91[13?], <o ,gn[J?{L]) € pry P(hhhz) (g)a

(19) xy € pry P, )(9[9?]) — n
o x € pry Py ny)(9i)-
=1

1=

Analogously we can verify that

(g17 ce 7gn) € pry P(hl,hz)(g)7

(20) el € pry P )(9[9?]) — n
e el € pry Py ny)(9i)-
=1

=
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Now let z; = uf(éyf), t=1,...,n, for some i1,...,i5s € {1,...,n} and y5 € G°.
Then x7 € pry P, h2)( [¢7]) implies

h = glg7) € i V e © glof) € v,
which, by (6), is equivalent to
C) i Cgl @) (g E DIV A Cglload v0). (008 vl
(From this, applying the v-negativity of x, we obtain
(22) h1Egi€§yf\/h2E9i§.§yf

for every i =1,...,n.
is is
The condition (21) is equivalent to (g1 éyf, ey Gn D YY) € pry Py ny)(g). The
71 21
condition (22) shows that z7 € pry Py, p,)(g:) for every i = 1,...,n, where z; =

u;?‘(egyf),izl,...,n. So,
i1

is s
(gl G’? yi -5 89n G? yf) S pry P(hl,hz)(g)7
(23) @t € pry Py nyy(9lof]) —F '
/\ x? € pry P(h17h2)(g’i)a

i=1

where ; = uf(é}yf), i=1,...,n
i1
Let 27 € pry P,y (9lg7]). If 27 € G, then, according to (16) and (19), we have

B na) (9911 (27) = glgt]lat] = glgr[z7] - gnl27]]

= Pny o) (9)(g1[27], - gn[x?])
= Pnn2) (9) (P(hl,fu) 2P)s s Py o) (90)(27))
= P(hl,hz)(g) [ h17h2 (hhhz)(gn)] (l‘?)

Similarly, we can prove that

Pty no) (91971 (€1) = Pty 0y (9) [Pl na) (91) - - - Pl no) (9n)] (€1)

for et € pry Py, ny)(9l97])-
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If 27 € pry P, ny)(gl97]), where z; = uf(éyf), i=1,...,n, for some yj € G*,
1
i1,...,1s € {1,...,n}, then, according to (16) and (23), we obtain

i is s
Py vy (9lot D) (@T) = glg7] S yi = 9l(91 D y1) - - - (gn © y1)]
11 11 11

i i
= Py h)(9)(91 © YT, 90 D YY)
11 11

= Pl 1) (9) (P ,na) (91)(@1), -5 Pl na) (9n) (21))
= P(hl,hz)(g) [P(hl,hz)(gl) - -P(hl,hz)(gn)] (95?)

The proof of Proposition 2 is complete. (I
Proposition 3. For all g1,92,h1,ho € G and i =1,...,n we have

Py ho) (91 6392) = Plh, 1) (91) Q?P(hl,m)(%)

Proof. Let 27 € pry P,y (91 @ g2). If 27 € G™, then

hi T (g1 6392)[55?] V ha T (g1 G?gz)[x?],
which, by (5), is equivalent to
(24) hi C gt ol )z ] V ohe C gi[ai gola ]2}y
This, according to the v-negativity of x, implies
(25) hi C go[2t] V ha T go[x7].

The condition (24) means that (257", g2[27], 27 ,) € Pry P, py)(91). From (25) we
obtain x7 € pry Py, 1,)(92). So, for 2T € G™ we have

(7", g2[al], 241) € Py Pl i) (91),

(26) LE? € pry P(h1,h2)(gl @QZ) — "
' zt € pry Pn, hy)(92)-

Consider now the case when 7 = ef'. In this case e} € pry P, n,)(91 © g2) means,
7
by (17), that

(27) hiCg1®g2 V ha C g1 9 ga.
3 K3
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Because g1 @ g2 T pi(® g2) = g2, by the v-negativity of x, the above condition gives
K3 K3
(28) hiC go V hs C go.

But 1} (® g2) = pi(® g2) = g2 and pj(®g2) = ey for k € {1,...,n}\ {3}, so, (27)
implies (e’fl,gg,efﬂ) € pry Pip, hy)(91). On the other hand, from (28) it follows
that e} € pry P, n,)(92). Therefore

(57", g2,€l41) € pry Pny hay (91),

(29) el € pry Py, hy) (91 © g2) «—
e i et € pry Py, hy)(92)-

is
In the third case when z; = p/(© y7), i = 1,...,n, for some y; € G, iy,...,is €
71
{1,...,n}, from z7 € pry Py, p,)(91 © g2) we conclude that
3

i i
(30) hiC (g1 ©92) Dyi Vha C (91 ©9g2) Dyi.
7 71 K3 71

Since x is v-negative, we have (g ® g2) é Y T (D g2 é y3) = g2 é y;, which means
7 71 (3 71 1
that (30) can be written in the form

is s
(31) hiCga2@yiVheCgo®yi.
11 1

is is is is is

But 17 (© 92 ©yi) = 1i(© 92 D7) = g2 Dyi and pp(© g2 D7) = pp(Dy7) for k €
[ 11 1 11 11 K3 1 21

{1,...,n}\{i}. This, together with the condition (30), proves (z% ', go é yi, i) €
i1

pry Py ho)(g1). Similarly, from (31) we can deduce z7 € pry P, h,)(g2). Therefore

) is
- (a7 92 © Y3, 2741) € pry Py g (91)
xY € pry Pipy hy) (91 D 92) oo de oI Tl 1 £(hy,h2)

1

zt € pry Py, hy)(92),

where x; = Mf(é y3),i=1,...,n.
11
Let 27 € pry P, ny) (91 @ g2). If 27 € G", then, according to (16) and (26), we
7

have

Phy ho) (91 61392)@711) = (1 g)le (7] = g1[2} " gola ]2 4]
1—1
1

= Py iy (91) (2371, Pl o) (92) (21), 2711

)
= Py noy(91) (271, g2[27], 27, 1)
(
= Ph, ,1y)(91) Q?P(hl,hg)(92)(x1)
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If o = e, then, analogously as in the previous case, using (16) and (29) we obtain

Py ho) (91 G?gz)(e?) = Plh,,hy)(91) pr(hl,hg)(%)(eﬁ

is
Similarly, in the case when x; = pj(®yi), ¢ = 1,...,n, for some y; € G°,
1

i1,...,1s € {1,...,n}, we have
is
Pihyna) (91 © g2)(@1) = (91 D g2) © yi
7 2 71

. is
= Py hay (91) (27", 92 D Y1 Tih)
1

= Py hoy (91) (2370 Py hoy (92) (21, 274 1)
= Py hy) (91) G?P(hl,hg)(92)($?)~

This completes our proof of Proposition 3. O

Basing on these propositions we are able to prove the sufficiency of the conditions
of Theorem 1.

Sufficiency. Let the triplet (x,, ) of binary relations on a representable Menger
(2,n)-semigroup 4 = (G;0,D,. .., D) satisfy all the conditions of the theorem. Then,
1

n
as it follows from Propositions 1-3, for all h1, ha € G, the mapping P, p,) is a rep-
resentation of 4 by n-place functions. Consider the family of representations P, p.,)

such that (hi, h2) € 7. Let P be the sum of this family, i.e., P= > Py, p,). Of
(h1,h2)€EYy
course, P is a representation of & by n-place functions. Let us show that xy = xp,

vy=~p and T = Tp.

Let (g1,92) € xp. Then, according to (8), we have® (g1,92) € X(h1,he) for all
(h1,h2) €7, ie.,

(V(h1,h2) €7) (Pr1 Pny ko) (91) € Ty iy hn)(92))
which is equivalent to
(V(h1, ha) € 7)(Va7) (2] € Pry Play no)(91) — 21 € DIy Py na)(92)) -
(From this, for 27" = e}, we obtain

(V(h1,h2) € 7) (ef € pry Py ny)(91) — € € pry P,y (92))

% X(h1,hs) denotes this quasi-order which corresponds to the representation P, p,). Anal-
ogously are defined y(p,, 5,) and 7z, p,)-
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which means that
(V(hl,hg) G’)/)(hl Cg1 VvV ho C o — hy C g2V ho [gg).

Let g1 # 0. Then g1 T¢g; and the above implication gives g1 C g1 — g1 C go. This
proves (g1, 92) € x because Y is reflexive. If g; = 0, then 0 = 0[gz . .. g2] T g2, by the
v-negativity of x. Hence (0,¢92) € x. So, (91,92) € X, i.e., xp C X-

Conversely, let (g91,92) € X, (h1,h2) € v and 27 € pry Py, 4y (g1). If 27 € G,
then hy T g1[z?] V ha C ¢1[z}]. Since the l-regularity of x together with g1 C go
implies g1[27]] T g2[z}], from the above we conclude that hy T ga2[z}] V ha C g2[27],
ie., o7 € pry Py, py)(g2). Similarly, in the case z7 = e, from e} € pry Py, p,)(91)

is
it follows that e} € pry Py, 4,)(g2). In the case when z; = pj (D yi), i =1,...,n,
1
for some y5; € G%, i1,...,is € {1,...,n}, applying the I-regularity of x to g1 C go,
is s is is
we obtain g; é yi T 92 é y{, whence, in view of hy T g1 D y{ V ha C g1 D yi,
71 71

we obtain h; C gg€9y1 V hy C gg€9y1 Therefore 27 € pry Py, p,)(92), which

proves pry P, hz)(gl) C pry P(hhhz)(gg) for all (h1, h2) € v. Thus (g1, 92) € xp, i-e.,
X C xp. Consequently, x = xp. This, together with the condition (¢) formulated in
lzxpﬂxg,l =mp. So, T = 7p.

Now let (g1, g2) € vp. Then, according to (8), we have (g1, 92) € V(n,,h,) for some
(hl, hg) €7, ie.,

the theorem, gives m = x N x~

(3(h1, h2) €7) (Pr1 Pihy ko) (91) N Pry Piny oy (92) #0)

which is equivalent to

(3(h1, h2) € v)(3x}) (27 € pry Py nyy(91) A 21 € pry Py py)(92)) -

This, for 2 € G", implies hy T ¢1[z}] V he T g1[z}] and hy T ga2[z}] V he C
g2[27]. From the above, in view of h; T hg and (15), we obtain g1 [z7]T g2[xT], whence,
applying the I-cancellativity of v, we get g1 T go, i.e., (g1, 92) € 7.
In the similar way, we can see that in the case of ] = e the condition (g1, ¢92) € v
also holds. 4
If ; = uj(éyf), i =1,...,n, for some y; € G*, i1,...,is € {1,...,n}, then
71

is is is is
MCgi®yi Vh Cg1®Pyi and by T go ®yi V ha T g2 ® y7, whence, by h1Ths
21 71 11 1

and (15), we obtain g; Egyf'l'gg é y;. This gives g1 Tga because 7 is [-cancellative.
11 11

In this way we have proved that in any case yp C 7.
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Conversely, let (g1,92) € 7. Since x is reflexive, g1 C g1 and g2 T g2, whence
g1C g1 Vg2 Cgiand g1 C ga V g2 C g2. Consequently, e} € pry Py, 4,)(91) and
et € pry Py, g,)(92). Thus (g1, 92) € v(g,.,90) C VP, 1.6, ¥ Cyp. So, v =p.

This completes the proof of the theorem. ([

Problem 1. Find the necessary and sufficient conditions under which the triplet
(x,7, ) of binary relations will be faithful projection representable for a representable
Menger (2, n)-semigroup.

Deleting from Theorem 1 the equality 7 = y N x~*

we obtain the necessary and
sufficient conditions under which the pair (x,) of binary relations is projection
representable for a representable Menger (2, n)-semigroup. Furthermore, all parts of
the proof of this theorem connected with these two relations are valid. So, we have

the following

Theorem 2. A pair (x,7) of binary relations on G is projection representable
for a representable Menger (2,n)-semigroup ¢ if and only if x is an l-regular and
v-negative quasi-order, vy is an [-cancellative 0-quasi-equivalence and the implication
(15) is satisfied.

Problem 2. Find the necessary and sufficient conditions under which the pair
(x,7) of binary relations will be faithful projection representable for a representable
Menger (2,n)-semigroup.

Let 4 = (G;0,®,...,®) be a representable Menger (2,n)-semigroup. Let us

1 n
consider on G the set T, (G) of mappings ¢t: = — ¢(x) defined as follows:
(a) x € Th(@Q), i.e., T,,(G) contains the identity transformation of G,
(b) if i € {1,...,n}, a,b1,...,bi—1,bi41,...,b, € G and t(z) € T,(G), then
alby "t (2)b} 4] € Tu(G),
(¢) Tn(G) contains those and only those mappings which are defined by (a) and
(b).
Let us consider on G two binary relations d; and d2 defined in the following way:
1. (g1,92) € 01 < g1 =t(g2) for some t € T,,(G),
1s ls
g1=(zoyi)[z] and g = pi(Sy7)[z] for some
71 21
2.(9192) €02 = 2 e G, yi € G5, € G, i,ir, ... is €{1,....n},
where the symbol [Z] can be empty.
It is not difficult to see that §; and 05 are I-regular relations, additionally 47 is a

quasi-order. Moreover, a binary relation o C G x G is v-negative if and only if it
contains 61 and .
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Let 7 be an [-regular equivalence on a representable Menger (2, n)-semigroup ¥.
Denote by x(7) the binary relation f;(fr(d2)0d107m), where fr and f; are respectively

the reflexive and the transitive closure operations (cf. [6]), and o is the composition

4

of relations,” i.e.,

(@

(32) X(m) = fi(fr(d2) 0b10m) = (62UAg)odpom)".

n=1

Since 7, 61 and fr(d2) are reflexive I-regular relations, x () is an l-regular quasi-order
containing 7, 01 and d2. So, x(7) is a v-negative quasi-order.

Proposition 4. x () is the smallest l[-regular and v-negative quasi-order contain-
ing w, i.e., x(m) C x, where x is any l-regular and v-negative quasi-order containing
.

Proof. Let x be an arbitrary l-regular and v-negative quasi-order containing 7.
Then 0; C x and d2 C X, because y is v-negative. Thus, m C x, 61 C x and fr(d2) C
X, whence fr(d)odjom C x® C x. From this, applying the transitivity of x, we obtain

oo

(fr(62)0d10om)™ C x™ C x for every natural n. Therefore |J ((d2 UAg)odiom)" C

n=1

X, i.e., x(m) C x. O

Theorem 3. A pair (v, ) of binary relations on a representable Menger (2,n)-
semigroup ¢ is projection representable if and only if
(a) v is an l-cancellative 0-quasi-equivalence,

(b) 7 is an l-regular equivalence such that x(w) N (x(7))~! C m,
(c) the following condition
(33) hiTho A h1 Cx g1 N ho Cx g2 — g1 192,

where h C, g means (h,g) € x(n), is satisfied for all g1, g2, h1,h2 € G.

Proof. Let P be such representation on a representable Menger (2,n)-
semigroup ¢ for which v = vp and # = wp. Then, by Proposition 3, we have
x(m) C xp, whence x(7) N (x(7))™' C xpNXp" =7p = 7.

Assume now that the premise of (33) is satisfied. Then (hq, he) € 7, (h1,91) € x(7)
and (ha,g2) € x(m). Consequently, (hi,he) € vp, (h1,91) € xp and (ha,g2) € xp,

*Recall that o o ¢ = {(a,c) | (Ib)(a,b) € 0 A (b,c) € 0}, fr(0) = 0U A4, fi(0) = EJ_O 0",

where " = popo...0p, o,0 are binary relations on A, and A4 = {(a,a) | a € A}.
"

n
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Le., pry P(h1) Npry P(he) # 0, pry P(h1) C pry P(g1) and pry P(hs) C pry P(g2),
whence pr; P(g1) N pry P(g2) # 0. So, (g1,92) € yp = 7, which means that the
condition (33) is satisfied. The necessity is proved.

To prove the sufficiency, assume that the pair (v, ) of binary relations satisfies all
the conditions of the theorem and consider the triplet (y(r),7, 7). Then 7 = 7! C
(x(m))~1, because m C x(m). Therefore m C x(m) N (x(m))~!, which, together with
the condition (b), gives m = x(7) N (x(7))~!. This means that the triplet (x(7),, )
satisfies all the conditions of Theorem 1. So, (x(7),~,7), and consequently, (v, ) is
projection representable. The sufficiency is proved. O

Problem 3. Find the necessary and sufficient conditions under which the pair
(v, m) of binary relations will be faithful projection representable.

Applying the method of mathematical induction to (32) we can prove the following

proposition.

Proposition 5. The condition (g1, g2) € x(7), where g1,g2 € G, means that the
system of conditions

g1 =20 N g2 = Tn,
ks,
ot | | 2=ty @ 210)[wi),
1;
(34) /\ . V x; = ti(xiﬂ)
i=0 S

Tit1 = i, ( gi 2y )[wi]

is valid for some n € N, x;,y;,2; € G, W; € G", t; € T,(G), k; € {1,...,n}.

In the sequel the formula

key
n z; = ti((yi @ 2170 [wi]),
1
/\ k.. Va; = ti(mi+1)
=\ T = o ( 591 270) (W]
1

i

will be denoted by Mi(m,n).
The inclusion x(7) N (x(7))~! C 7 means that for all g1, g2 € G we have

(91,92) € x(7) A (92,91) € X(7) — g1 = g2,

which, according to Proposition 5, can be written as the system of conditions
(An,m)n,men, where

Apm: MMO,n—1) A M+ 1,n+m) A g = Tpym — To = Tn.
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The system (Ayn,m)n,men is equivalent to the system (A, )nen, where
Ap: MO,n—1) A xo =2y — To = X1

Consider now the implication (33). According to (34) the condition (h1, g1) € x(7)
means that

(35) hi=20 AMO,n—1) Az =01
for some x;, y;, 2k, , ti, ki, W;. Similarly, the condition (hs, g2) € x(7) means that
(36) ho = pp1 A Mn+1,n+m) A Tnpmyr = g2

for some x;, yi, 2k, ti, ki, W;. So, (33) can be written as the system (B, m)n,men Of

conditions
Bpm: 2o Txpe1 AIMO,n—1) AMn+1L,n+m) — 2n T Tntm1-
In this way we have proved

Theorem 4. A pair (v, ) of binary relations on a representable Menger (2,n)-
semigroup ¢ is projection representable if and only if
(a) v is an l-cancellative 0-quasi-equivalence,
(b) 7 is an l-regular equivalence,
(c) the conditions (Ay)nen and (By,m)n,men are satisfied.

Theorem 5. A pair (x, 7) of binary relations is (faithful) projection representable
for a representable Menger (2,n)-semigroup ¢ if and only if x is an l-regular and

v-negative quasi-order such that m = y Ny~ '.

Proof. The necessity of these conditions follows from the proof of Theorem 1.
To prove their sufficiency, for every element g € G we define an n-place function
P.(g): A* — G, where a € G, putting

glz7] ifaC g[z}] and 2} € G,
g ifaC g and z =ef,
is ) i L s
(37) Po(g)(af) =] 90yi faCgOyi and z; =pj(Dy),
71 11 21
i=1,...,n, for some y; € G*,
il,...,isE{l,...,n}.
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Since, for hy = hy = a € G, the function Py, 4,)(g) defined by (16) coincides with the
function P,(g), from Propositions 1 — 3 it follows that the mapping P,: g — P.(g)
is a representation of ¢ by n-place functions. Further, analogously as in the proof

of Theorem 1, we can prove that Py = > P, is a representation of ¢ for which
acG
X = xp, and ™ = 7p,. So, the pair (x,7) is projection representable for ¥.

Let us show that (x,n) is faithful projection representable. In [11] it is proved
that each representable Menger (2, n)-semigroup has a faithful representation by n-
place functions. Let A be such representation. Then obviously yp = G x G and
TA = G x Q.

Consider the representation P = A + Py. Since A is a faithful representation, P
is also faithful. Moreover xp = xAa Nxp, = G xGNyx = x and 7p = mA N7p, =
G x GNm =m. So, (x,n) is faithful projection representable for ¢. O

In the same manner, using the construction (37), we can prove the following
theorem.

Theorem 6. A binary relation x is (faithful) projection representable for a rep-
resentable Menger (2, n)-semigroup if and only if it is an l-regular, v-negative quasi-
order.

Theorem 7. A binary relation w is (faithful) projection representable for a rep-
resentable Menger (2,n)-semigroup if and only if it is an [-regular equivalence such
that x(m) N (x(7))~! C .

Proof. Consider the pair (x(r),7) of binary relations, where x(7) is defined
by (32). In a similar way as in the proof of Theorem 3, we can prove that this

pair satisfies all the conditions of Theorem 5, whence we conclude the validity of
Theorem 7. U

Since, as it was showed above, the inclusion x(7) N (x(7))~! C 7 is equivalent to
the system of conditions (4, )nen, the last theorem can be rewritten in the form:

Theorem 8. A binary relation 7 is (faithful) projection representable for a rep-
resentable Menger (2, n)-semigroup if and only if it is an I-regular equivalence and
the system of conditions (A, )nen Is satisfied.

Consider on a Menger (2,n)-semigroup ¢ the binary relation x( defined in the
following way:

(38) Xo = fi(fr(d2) 0 1) = U (02U AG)o01)",

where f; and fr are reflexive and transitive closure operations.
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Proposition 6. x( is the least I-regular and v-negative quasi-order on 4.

The proof of this proposition is analogous to the proof of Proposition 3.

Theorem 9. A binary relation v is projection representable for a representable
Menger (2, n)-semigroup if and only if it is an l-cancellative 0-quasi-equivalence and
the following implication

(39) hiTha ANh1Cogi ANhaCoga — 91192

is satisfied for all hy, ha, g1, 92 € G, where h Co g means (h,g) € xo.

Proof. The necessity of (39) can be proved analogous as the necessity of (33)
in the proof of Theorem 3. To prove the sufficiency we consider the pair (xo, ). By
Proposition 6, this pair satisfies all demands of Theorem 2, whence we conclude the
validity of Theorem 9. O

Problem 4. Find the necessary and sufficient conditions under which v will be
faithful projection representable.

Basing on the formula (38) we can prove the following proposition:

Proposition 7. jFrom (g1, 92) € xo0, where g1, g2 € G, it follows that the system
of conditions

kop
el z; = ti((Yi 4 1)) [wil),

13
N ksi .
=0\ @i = g ( ® 270 [wi]

13

\Y €Ty = ti(xi—i-l)

is valid forn € N, x;,y;,2; € G, W; € G", t; € T,,(G), k; € {1,...,n}.
Denoting by 9t(m,n) the formula

k

n z; = ti((Yi IEB 210)[Wi)),
1;
. Voxg =ti(zig) |,
=\ | i = (8 1)1
1;

and using the same argumentation as in the proof of Theorem 4, we can prove that
the implication (39) is equivalent to the system of conditions (Cy, m )n,men, where

Crm: 2o TZpt1 ANO,n—1) A NMn+1,n+m) — 20T Trtm+1-

So, the following theorem is true:

1033



Theorem 10. A binary relation -y is projection representable for a representable
Menger (2, n)-semigroup if and only if it is an [-cancellative 0-quasi-equivalence and
the system of conditions (Cp m )n,men Is satisfied.

4. PROJECTION REPRESENTABLE RELATIONS ON (2,7n)-SEMIGROUPS

Let x, v and 7 be three binary relations on a (2,n)-semigroup (G; E}?, e Q;)
Similarly as in the case of Menger (2, n)-semigroups we say that the triplet (x,~y, 7) is
(faithful) projection representable for a (2,n)-semigroup (Gj G?, ol 62) if there exists
such (faithful) representation P of (Gj 6?, cee E?L) by n-place functions for which y =

Xp, Y = vp and m = wp. Analogously we define the projection representable pairs
and separate relations.

It is not difficult to verify that our Theorem 1 formulated for representable Menger
(2,n)-semigroups is also valid for representable (2, n)-semigroups. The proof of this
version of Theorem 1 is analogous to the proof of the previous version, but in the proof
of the sufficiency instead of the representation P we must consider the representation
P*, which is the sum of the family of representations (P('hhm))(hh@)@, where for
every g € G PG, 5,.,(9): A5 — G, (A5 =Ao U {(e1,...,en)}, see page 6) is a partial
n-place function such that

hiCgVhyCyg if 27 = e?,
i i ) i
MEg@yt VhCgDyi if o= pi(Dy),
1 1 1
z} € pry P(.fth)(Q) — i=1,...,n, for

some yj € G® and

il...,isE{l,...,n}

and
g if 27 = €Y,
s is
. goy; if x = pi(Dyi),
P(hl,hz)(g)(x?) = “ ) Ta
t=1,...,n, for some y; € G*
and i1...,is € {1,...,n}.
Also Theorem 2 is valid for (2,n)-semigroups. Moreover, problems analogous to
Problem 1 and Problem 2 can be posed for (2, n)-semigroups, too.
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Theorem 3 will be valid for (2, n)-semigroups if we replace the relation x(m) by
the relation

(40) X () = fi(fr(82) o) = | J (62U Ag) o m)",
n=1

e., if we delete d; from the formula (32).
Proposition 5 for (2, n)-semigroups has the following form:

Proposition 8. The condition (g1, g2) € x°*(w), where g1, g2 € G, means that the
system of conditions

ks,
— S;
n—1 Ty =Y; SB Zl,;7
1;
glzxo/\ggzxn/\/\ k V T = Tip1
i=0 ~

Tip1 = fuk, ( SBV 27!)
1;

is valid for some n € N, x;,y;,2; € G, k; € {1,...,n}.
Denoting by ¥(m,n) the formula

ke,

_ L _Sq
n Ti =1Yi S¥ Zl,;7
1; .
/\ & V x; = Ti41
i=m _ 2 _s;
Tip1 = pu, ( @ 27!)
15

and using the same argumentation as in the proof of Theorem 4, we can prove

Theorem 11. A pair (v, ) of binary relations on a representable (2, n)-semigroup
is projection representable if and only if «y is an [-cancellative 0-quasi-equivalence, 7

is an l-regular equivalence, and the systems of conditions A and B;, ,,, where

n,m?’
A X(0,n—1) A g =y — x9 = 21,
Byt 0Tt A X(0,n—1) A X(n+1,n+m) — 2, T Tnymi1

are satisfied.

Theorem 5 is valid for (2, n)-semigroups too, but in the proof, the representation
P, defined by (37) must be replaced by the representation P?, where

g if a C g and z; = e,
is is is
gyl ifaC gy and 2 = uj (S y7),
1 1 1

Pz (g)(a7) =
i=1,...,n, for some y; € G*,

and i1,...,is € {1,...,n}.
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For (2,n)-semigroups Theorem 6 has the same form as for Menger (2,n)-
semigroup, in Theorem 7 the relation y(7) must be replaced by x°*(w), and in
Theorem 8 instead of A, we must use A?.

Further, using the same argumentation as in the proof of Proposition 4 we can
prove that the relation

(@:

xo = fi(fr(d2)) = | (02U LG)",

n=1

where f; and fr are the reflexive and the transitive closure operations, is the least
l-regular and v-negative quasi-order on a given (2,n)-semigroup. Using this rela-
tion, we can prove the analog of Theorem 10 for (2,n)-semigroups. The analog of
Problem 4 can be posed too.

Proposition 7 for (2, n)-semigroups has the following form:

Proposition 9. The condition (g1, g2) € X, where g1,g92 € G, means that the
system of conditions

ks,
s
n_1 Ti =Yi ]SB 215,
1
9121‘0/\92:1‘”/\/\ X VT, = Tiq1
=0

Tip1 = i, (& 257)
kli

is valid for n € N, x;,y;,z; € G.

Further, denoting by B(m,n) the formula

ks,
S;
n Ty =Yi D Zlia
1;
/\ X VT = x4
1= %% S4
=m Tit1 = Mki(ISB 21})
1;

and using the same argumentation as in the proof of Theorem 10, we can prove

Theorem 12. A binary relation -y is projection representable for a representable
(2,n)-semigroup if and only if it is an l-cancellative 0-quasi-equivalence and the
system of conditions (Cy, ., )n.men, Where

Comt ToTTpg1 A B(0,n—1) A B(n+1,n+m) — 20T Tnimi1

is satisfied.

1036



1]
2]
8]

[4]
[5]

[6]
[7]
8]
[9]
[10]
[11]
[12]
[13]

[14]

[15]

[16]

References

W. A. Dudek and V. S. Trokhimenko: Functional Menger P-algebras. Commun. Algebra
30 (2002), 5921-5931.

W. A. Dudek and V.S. Trokhimenko: Representations of Menger (2,n)-semigroups by
multiplace functions. Commun. Algebra 34 (2006), 259-274.

W. A. Dudek and V. S. Trokhimenko: Menger algebras of multiplace functions. Centrul
Ed. USM. Khishinev, 2006, ISBN 978-9975-70-621-6. (In Russian.)

H. B. Mann: On orthogonal Latin squares. Bull. Amer. Math. Soc. 50 (1944), 249-257.
V. Novdk and M. Novotny: Transitive ternary relations and quasiorderings. Arch. Math.
(Brno) 1/2 (1989), 5-12.

J. Riguet: Relations binaires, fermetures, correspondances de Galois. Bull. Soc. Math.
France 76 (1948), 114-155.

B. M. Schein: A relation of co-definability on semigroups of functions. Ordered sets and
lattices 1 (1971), 86-89 (Izdat. Saratov. Gos. Univ.). (In Russian.)

B. M. Schein: Projection partitions of function semigroups. Math. Rep. Acad. Sci., R.
Soc. Canada 1 (1979), 67-70.

B. M. Schein: Lectures on semigroups of transformations. Amer. Math. Soc. Translat.
113 (1979), 123-181.

B. M. Schein and V. S. Trohimenko: Algebras of multiplace functions. Semigroup Forum
17 (1979), 1-64.

F. N. Sokhatskij: An abstract characterization of (2, n)-semigroups of n-ary operations.
Mat. Issled. 65 (1982), 132-139. (In Russian.)

V. S. Trokhimenko: Ordered algebras of multiplace functions. Izv. Vyssh. Uchebn. Zaved.
Matematika 1 (1971), 90-98. (In Russian.)

V. S. Trokhimenko: Abstract characterizations of some algebras of multiplace functions.
Izv. Yyssh. Uchebn. Zaved. Matematika 4 (1971), 87-95. (In Russian.)

V. S. Trokhimenko: Characterization of the co-definability relation on ordered algebras
of multiplace functions. Izv. Vyssh. Uchebn. Zaved. Matematika 9 (1977), 80-88. (In
Russian.)

V. S. Trokhimenko: Stationary subsets and stabilizers of restrictive Menger P-algebras
of multiplace functions. Algebra Universalis 44 (2000), 129-142.

T. Yakubov: On (2, n)-semigroups of n-ary operations. Bull. Akad. Stiinta SSR Moldov.
1 (1974), 29-46. (In Russian.)

Authors’ addresses: Wiestaw A.Dudek, Institute of Mathematics and Com-

puter Science, Wroclaw University of Technology, 50-370 Wroclaw, Poland, e-mail: dudek
@im.pwr.wroc.pl; Valentin S. Trokhimenko, Department of Mathematics, Peda-
gogical University, 21100 Vinnitsa, Ukraine, e-mail: vtrokhim@sovamua.com.

1037



		webmaster@dml.cz
	2020-07-03T17:40:15+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




