[2] Benyamini, Y., Lindenstrauss, J.:
Geometric Nonlinear Functional Analysis, Vol. 1. Colloqium publications (American Mathematical Society); v. 48, Providence, Rhode Island (2000).
MR 1727673
[3] Duda, J.:
On inverses of $\delta$-convex mappings. Comment. Math. Univ. Carolin. 42 (2001), 281-297.
MR 1832147 |
Zbl 1053.47522
[5] Gohberg, I. C., Krein, M. G.:
Fundamental aspects of defect numbers, root numbers, and indexes of linear operators. Uspekhi Mat. Nauk 12 (1957), 43-118 Russian.
MR 0096978
[7] Heisler, M.: Some aspects of differentiability in geometry on Banach spaces. Ph.D. thesis, Charles University, Prague (1996).
[9] Kopecká, E., Malý, J.:
Remarks on delta-convex functions. Comment. Math. Univ. Carolin. 31 (1990), 501-510.
MR 1078484
[11] Lindenstrauss, J., Preiss, D.:
Fréchet differentiability of Lipschitz functions (a survey). In: Recent Progress in Functional Analysis, 19-42, North-Holland Math. Stud. 189, North-Holland, Amsterdam (2001).
MR 1861745 |
Zbl 1037.46043
[13] Preiss, D.:
Almost differentiability of convex functions in Banach spaces and determination of measures by their values on balls. Collection: Geometry of Banach spaces (Strobl, 1989), 237-244, London Math. Soc. Lecture Note Ser. 158 (1990).
MR 1110199
[15] Veselý, L.:
On the multiplicity points of monotone operators on separable Banach spaces. Comment. Math. Univ. Carolin. 27 (1986), 551-570.
MR 0873628
[16] Veselý, L., Zajíček, L.:
Delta-convex mappings between Banach spaces and applications. Dissertationes Math. (Rozprawy Mat.) 289 (1989).
MR 1016045
[17] Zajíček, L.:
On the points of multivaluedness of metric projections in separable Banach spaces. Comment. Math. Univ. Carolin. 19 (1978), 513-523.
MR 0508958
[18] Zajíček, L.:
On the points of multiplicity of monotone operators. Comment. Math. Univ. Carolin. 19 (1978), 179-189.
MR 0493541
[19] Zajíček, L.:
On the differentiation of convex functions in finite and infinite dimensional spaces. Czech. Math. J. 29 (1979), 340-348.
MR 0536060
[20] Zajíček, L.:
Differentiability of the distance function and points of multi-valuedness of the metric projection in Banach space. Czech. Math. J. 33 (1983), 292-308.
MR 0699027
[21] Zajíček, L.:
On $\sigma$-porous sets in abstract spaces. Abstract Appl. Analysis 2005 (2005), 509-534.
MR 2201041