Previous |  Up |  Next

Article

Keywords:
point lattice; Fourier transform; volume; variance
Summary:
The variance of the number of lattice points inside the dilated bounded set $rD$ with random position in $\Bbb R^d$ has asymptotics $\sim r^{d-1}$ if the rotational average of the squared modulus of the Fourier transform of the set is $O(\rho ^{-d-1})$. The asymptotics follow from Wiener's Tauberian theorem.
References:
[1] Bochner, S., Chandrasekharan, K.: Fourier transforms. Princeton University Press (1949). MR 0031582 | Zbl 0065.34101
[2] Brandolini, L., Hofmann, S., Iosevich, A.: Sharp rate of average decay of Fourier transform of a bounded set. Geom. Func. Anal. 13 (2003), 671-680. DOI 10.1007/s00039-003-0426-7 | MR 2006553
[3] Janáček, J.: Variance of periodic measure of bounded set with random position. Comment. Math. Univ. Carolinae 47 (2006), 473-482. MR 2281006
[4] Kendall, D. G.: On the number of lattice points inside a random oval. Quarterly J. Math. 19 (1948), 1-26. DOI 10.1093/qmath/os-19.1.1 | MR 0024929 | Zbl 0031.11201
[5] Kendall, D. G., Rankin, R. A.: On the number of points of a given lattice in a random hypersphere. Quarterly J. Math., 2nd Ser. 4 (1953), 178-189. DOI 10.1093/qmath/4.1.178 | MR 0057484 | Zbl 0052.14503
[6] Matérn, B.: Precision of area estimation: a numerical study. J. Microsc. 153 (1989), 269-283. DOI 10.1111/j.1365-2818.1989.tb01477.x
[7] Matheron, G.: Les variables regionalisés et leur estimation. Masson et CIE, Paris (1965).
[8] Rao, R. C.: Linear statistical inference and its applications. 2nd ed. , John Wiley & Sons, New York (1973). MR 0346957 | Zbl 0256.62002
[9] Rataj, J.: On set covariance and three-point test sets. Czech. Math. J. 54 (2004), 205-214. DOI 10.1023/B:CMAJ.0000027260.34288.7f | MR 2040232 | Zbl 1049.52004
[10] Watson, G. N.: A treatise on the theory of Bessel functions. 2nd edition, Cambridge University Press (1922). MR 0010746
[11] Rudin, W.: Functional Analysis. McGraw-Hill Book Company (1973). MR 0365062 | Zbl 0253.46001
[12] Varchenko, A.: Number of lattice points in families of homothetic domains in $\Bbb R^n$. Func. Anal. Appl. 17 (1983), 79-83. DOI 10.1007/BF01083133 | MR 0705041
[13] Wiener, N.: The Fourier integral and certain of its applications. Dover Publications Inc., New York (1933). MR 0100201 | Zbl 0006.05401
Partner of
EuDML logo