Previous |  Up |  Next

Article

Keywords:
$(LB)$-spaces; weighted spaces of holomorphic functions; dual density condition
Summary:
We characterize when weighted $(LB)$-spaces of holomorphic functions have the dual density condition, when the weights are radial and grow logarithmically.
References:
[1] Anderson, J. M., Duncan, J.: Duals of Banach spaces of entire functions. Glasgow Math. J. 32 (1990), 215-220. DOI 10.1017/S0017089500009241 | MR 1058534 | Zbl 0769.46011
[2] Bastin, F.: Distinguishedness of weighted Fréchet spaces of continuous functions. Proc. Edinb. Math. Soc., II. Ser. 35 271-283. DOI 10.1017/S0013091500005538 | MR 1169245 | Zbl 0738.46006
[3] Bierstedt, K. D., Bonet, J.: Stefan Heinrich's density condition and the characterization of the distinguished Köthe echelon spaces. Math. Nachr. 135 (1988), 149-180. DOI 10.1002/mana.19881350115 | MR 0944226
[4] Bierstedt, K. D., Bonet, J.: Dual density conditions in ${(DF)}$-spaces I. Results Math. 14 (1988), 242-274. DOI 10.1007/BF03323229 | MR 0964043 | Zbl 0688.46002
[5] Bierstedt, K. D., Bonet, J.: Dual density conditions in ${(DF)}$-spaces {II}. Bull. Soc. Roy. Sci. Liège 57 (1988), 567-589. MR 0986374 | Zbl 0688.46003
[6] Bierstedt, K. D., Bonet, J.: Biduality in {($LF$)}-spaces. RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. 95 (2001), 171-180. MR 1902422 | Zbl 1034.46001
[7] Bierstedt, K. D., Bonet, J., Galbis, A.: Weighted spaces of holomorphic functions on balanced domains. Michigan Math. J. 40 (1993), 271-297. DOI 10.1307/mmj/1029004753 | MR 1226832 | Zbl 0803.46023
[8] Bierstedt, K. D., Bonet, J., Taskinen, J.: Associated weights and spaces of holomorphic functions. Studia Math. 127 (1998), 137-168. MR 1488148 | Zbl 0934.46027
[9] Bierstedt, K. D., Meise, R., Summers, W. H.: A projective description of weighted inductive limits. Trans. Amer. Math. Soc. 272 (1982), 107-160. DOI 10.1090/S0002-9947-1982-0656483-9 | MR 0656483 | Zbl 0599.46026
[10] Bonet, J., Engliš, M., Taskinen, J.: Weighted $L^{\infty}$-estimates for Bergman projections. Studia Math. 171 (2005), 67-92. DOI 10.4064/sm171-1-4 | MR 2182272
[11] Heinrich, S.: Ultrapowers of locally convex spaces and applications I. Math. Nachr. 118 (1984), 285-315. DOI 10.1002/mana.19841180121 | MR 0773627 | Zbl 0576.46002
[12] Jarchow, H.: Locally Convex Spaces. Math. Leitfäden, B.G. Teubner, Stuttgart (1981). MR 0632257 | Zbl 0466.46001
[13] Köthe, G.: Topological Vector Spaces I. Grundlehren der math. Wiss. 159, Springer-Verlag, New York-Berlin (1969). MR 0248498
[14] Meise, R., Vogt, D.: Introduction to Functional Analysis. Oxford Graduate Texts in Math. 2, The Clarendon Press, Oxford University Press, New York (1997). MR 1483073 | Zbl 0924.46002
[15] Pérez-Carreras, P., Bonet, J.: Barrelled Locally Convex Spaces. North-Holland Math. Stud. 131, Amsterdam (1987). MR 0880207
[16] Peris, A.: Some results on Fréchet spaces with the density condition. Arch. Math. (Basel) 59 (1992), 286-293. DOI 10.1007/BF01197327 | MR 1174407 | Zbl 0732.46002
[17] Wolf, E.: Weighted $(LB)$-spaces of holomorphic functions and the dual density conditions. RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 99 (2005), 149-165. MR 2216098 | Zbl 1106.46017
[18] Wolf, E.: The density condition and distinguishedness of weighted Fréchet spaces of holomorphic functions. J. Math. Anal. Appl. 327 (2007), 530-546. DOI 10.1016/j.jmaa.2006.06.071 | MR 2306820
Partner of
EuDML logo