Article
Keywords:
lattice ordered group; wreath product; affine completeness
Summary:
Let $\Delta $ and $H$ be a nonzero abelian linearly ordered group or a nonzero abelian lattice ordered group, respectively. In this paper we prove that the wreath product of $\Delta $ and $H$ fails to be affine complete.
References:
[1] Conrad, P.:
Lattice Ordered Groups. Tulane University New Orleans (1970).
Zbl 0258.06011
[2] Jakubík, J.:
Affine completeness of complete lattice ordered groups. Czechoslovak Math. J. 45 (1995), 571-576.
MR 1344522
[4] Jakubík, J.:
Affine completeness and lexicographic product decompositions of abelian lattice ordered groups. Czechoslovak Math. J. 55 (2005), 917-922.
DOI 10.1007/s10587-005-0075-0 |
MR 2184372
[5] Kaarli, K., Pixley, A. F.:
Polynomial Completeness in Algebraic Systems. Chapman-Hall London-New York-Washington (2000).
MR 1888967