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Abstract. Let ∆ and H be a nonzero abelian linearly ordered group or a nonzero abelian
lattice ordered group, respectively. In this paper we prove that the wreath product of ∆
and H fails to be affine complete.
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1. Introduction

Affine completeness of algebraic structures was investigated in the monograph [6]

by Kaarli and Pixley. A problem proposed in this monograph (and formulated also

earlier in [2]) asks whether there exists a lattice ordered group G 6= {0} which is

affine complete; this problem remains open.

Some negative results in this direction (dealing with sufficient conditions under

which G is not affine complete) were proved by Kaarli and Pixley [6], by Csontóová

and the author [5] and by the author [2], [3], [4]. Cf. also Section 5 below.

In the present paper we prove

(∗) Assume that a lattice ordered group G can be represented as a wreath product

of a nonzero abelian linearly ordered group and a nonzero abelian lattice ordered

group. Then G is not affine complete.
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2. Preliminaries

For lattice ordered groups we apply the notation as in Conrad [1] (with some

minor modifications). In particular, the group operation is always written additively,

though it is not assumed to be commutative.

Let G be a lattice ordered group and let P (G) be the set of all polynomials

over G. If for each mapping f : Gn → G such that n ∈ N and f is compatible with

all congruence relations on G the relation f ∈ P (G) is valid then G is called affine

complete.

We recall the definition of the wreath product (cf., e.g., [1]).

Let H be a lattice ordered group and let ∆ be a linearly ordered group. For each

δ ∈ ∆ let Gδ = H . Consider the set-theoretical direct product

D = ∆ ×
∏

δ∈∆

Gδ.

Suppose that

d1 = (α; . . . , aδ, . . .)δ∈∆, d2 = (β; . . . , bδ, . . .)δ∈∆

are elements of D. We define the operation + on D by putting

d1 + d2 = (α + β; cδ, . . .)δ∈∆, cδ = aδ−β + bδ.

Then (D; +) is a group. The partial order on D is defined by putting d1 > 0 if either

α > 0, or α = 0 and aδ > 0 for each δ ∈ ∆. We obtain a lattice ordered group

(D; +, 6) which will be denoted by ∆WH . We say that this lattice ordered group

is a wreath product of ∆ and of H .

In what follows we assume that both ∆ and H are nonzero and abelian.

3. Auxiliary results

Assume that G is a nonzero lattice ordered group. Let p(x) be a polynomial overG

with one variable x. It is well-known that then there exists a finite subset C of G

such that p(x) can be expressed in the form

(1) p(x) =
∧

i∈I

∨

j∈J(i)

aij , aij =
∑

t∈T (i,j)

bij
t ,

where I 6= ∅ is a finite set, J(i) 6= ∅ is a finite set for each i ∈ I, T (i, j) 6= ∅ is a finite

set for each i ∈ I and each j ∈ J(i), and for each i ∈ I, j ∈ J(i), t ∈ T (i, j) we have

either bt ∈ C or bt ∈ {x,−x}.
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Let D be as in Section 2 and let d1 = (α; . . . , aδ, . . .)δ∈∆ be an element of D. We

denote

d0
1 = (α; . . . , a0

δ . . .)δ∈∆,

where a0
δ = 0 for each δ ∈ ∆.

Further, we put

D0 = {d1 ∈ D : d0
1 = 0},

d1(∆) = α, d1(Gδ) = aδ for each δ ∈ ∆.

For each d1 ∈ D we set

f(d1) = d0
1.

Let ̺ be a congruence relation on D and d ∈ D. We put ̺(d) = {d′ ∈ D : d̺d′}.

Lemma 3.1. Let d1, d2 ∈ D, d1̺d2. Then f(d1)̺f(d2).

P r o o f. For d1 and d2 we apply the notation as in Section 2. If α = β, then

f(d1) = f(d2), whence f(d1)̺f(d2).

Assume that α 6= β. Then without loss of generality we can suppose that α < β.

Put d3 = d2 − d1. We get 0̺d3 and 0 6 |d4| < d3 for each d4 ∈ D0. Hence 0̺d4.

This yields d0
1̺d1 and d0

2̺d2. Thus d0
1̺d0

2; hence f(d1)̺f(d2). �

We have proved that the mapping f is compatible with all congruence relations

on D. Thus in order to prove the assertion (∗) from Section 1 it remains to show

that f(x) does not belong to P (G).

From the definition of the partial order in D we immediately obtain (under the

notation as in Section 2)

Lemma 3.2. If α < β, then d1 ∨ d2 = d2. If α = β, then d1 ∨ d2 = d′, where

d′ = (α; . . . , aδ ∨ bδ, . . .)δ∈∆.

The analogous result holds for d1 ∧ d2.

Let p(x) and C be as above. For d ∈ D, the meanings of the expressions p(d) and

aij(d) are obvious.

Lemma 3.3. Let h be any element of H . There exists d0 ∈ D such that

d0(∆) > 0, d0(Gδ) = h for each δ ∈ ∆ and

d0 >
∑

i∈I, j∈Ji, t∈T 0(i,j)

bij
t ,

where T 0(i, j) is the set of those t ∈ T (i, j), for which the element bij
t belongs to C.

P r o o f. This is a consequence of the fact that the sets I, J(i) and T (i, j) are

finite and that the linearly ordered group ∆ is nonzero. �
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We will deal with the element f(d0) of D. Below, in Section 4, we will apply

specific conditions for choosing in an appropriate way the corresponding element h

of G.

Again, let p(x) be as above and let i ∈ I, j ∈ Ji. We denote by n1
ij and n2

ij the

number of those t ∈ Tij for which we have bij
t = x or bij

t = −x, respectively. Put

nij = n1
ij − n2

ij .

Lemma 3.4. Let us apply the notation as above. Put d0(∆) = α0. Then we have

(i) (aij(d0))(∆) = nijα0 +
∑

t∈T 0(i,j)

bij
t (∆);

(ii) for each δ ∈ ∆,

(aij(d0))(Gδ) = nijh + cδ
ij ,

where cδ
ij is an element of C which is uniquely determined by aij and does not

depend on the choice of h.

P r o o f. This is a consequence of the definition of the operation + in D and of

the fact that ∆ and H are abelian. �

4. Proof of (∗)

In proving (∗) we proceed by way of contradiction. Let f(x) be as above. In view

of 3.1, we have to prove that f(x) does not belong to P (D).

Suppose that there is p(x) ∈ P (D) such that p(x0) = f(x0) for each x0 ∈ D.

For p(x), we apply the notation as above.

Let d0 be as in Section 3.

Lemma 4.1. Let i0 ∈ I. Then there exists j ∈ Ji0 such that ni0j > 1.

P r o o f. By way of contradiction, assume that ni0j < 1 for each j ∈ Ji0 .

Consider the element d0
0 (cf. Section 3). Then in view of 3.3 we have ai0j(d0) < d0

0

for each j ∈ Ji0 . By applying 3.2 we conclude that

∨

j∈Ji0

ai0j(d0) < d0
0.

This yields p(d0) < d0
0 = f(d0), which is a contradiction. �

Let i ∈ I. Put J0
i = {j ∈ Ji : nij > 1}. In view of 4.1 we have J0

i 6= ∅. Moreover,

3.2 yields

(1)
∨

j∈Ji

aij(d0) =
∨

j∈J0

i

aij(d0).
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Let us denote this element by ai(d0). Hence

(2) p(d0) =
∧

i∈I

ai(d0).

Denote mi = max{nij}j∈J0

i

. Hence mi > 1. Further, we put

J0m
i = {j ∈ J0

i : nij = mi}.

According to 3.2 we obtain

(ai(d0))(∆) = mi,(3)

(ai(d0))(Gδ) =
∨

j∈J0m

i

aij(Gδ).(4)

Lemma 4.2. Let 0 < k ∈ H and δ0 ∈ ∆. There exists h ∈ H such that

(aij(d0))(Gδ0
) > k for each i ∈ I and each j ∈ J0m

i .

P r o o f. Let i ∈ I and j ∈ J0m
i . Then nij > 1. Let cδ0

ij be as in 3.4 (ii). Since

the sets I and Ji are finite and H 6= {0} there exists h ∈ H such that

h > k − cδ0

ij

for each i ∈ I and j ∈ Ji; for such i and j we then have h + cδ0

ij > k. In particular,

if j ∈ J0m
i , then nijh + cδ0

ij > h + cδ0

ij > k. �

In what follows let h be as in 4.2. Then according to (4) we obtain

(5) (ai(d0))(Gδ0
) > k.

Now from the result analogous to 3.2 concerning the operation ∧ and by apply-

ing (2), (5) we get

(p(d0))(Gδ0
) > k.

On the other hand, we have f(d0) = d0
0 and d0

0(Gδ) = 0 for each δ ∈ A. There-

fore f(d0) 6= p(d0) and we arrived at a contradiction, concluding the proof of the

assertion (∗).
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5. On the relation between (∗) and the results of [2]–[6]

We denote by Cw the class of all nonzero lattice ordered groups which can be

represented as a nontrivial wreath product.

Assume that G is a nonzero lattice ordered group; the following conditions are

sufficient for G nit to be affine complete:

(a1) G is complete. (Cf. [2].)

(a2) G is abelian and projectable. (Cf. [5].)

(a3) G can be represented as a nontrivial direct product. (Cf. [3].)

(a4) G is abelian and can be represented as a nontrivial lexicographic product.

(Cf. [4].)

(a5) G can be represented as direct product A×B, where A is a nonzero subdirectly

irreducible lattice ordered group and B is any lattice ordered group. (Cf. [6].)

For i ∈ {1, 2, 3, 4} let Ci be the class of all nonzero lattice ordered groups satisfying

the condition (ai).

Now suppose that G is a lattice ordered group satisfying the assumption of (∗).

Then G is nonzero. Further, we have

(i) G fails to be complete.

(ii) G fails to be projectable.

(iii) G is directly indecomposable.

Therefore for any lattice ordered group G, the assertion (∗) fails to be a conse-

quence of (ai) for i = 1, 2, 3.

Lemma 5.1. Let G be as in (∗). Then G cannot be represented as a nontrivial

lexicographic product.

P r o o f. By way of contradiction, assume that G can be represented as a non-

trivial lexicographic product. Thus without loss of generality we can suppose that

G is a lexicographic product

G = Γi∈IKi,

where I is a linearly ordered set having more than one element and allKi are nonzero

lattice ordered groups; moreover, if i ∈ I and i is not the greatest element of I, then

Ki is linearly ordered.

First suppose that I has no greatest element. Then G is linearly ordered. But since

G satisfies the assumption of (∗) it is not linearly ordered, which is a contradiction.

Hence I has the greatest element which will be denoted by i1.

For each i ∈ I let Ki be the set of all g ∈ G such that g(Kj) = 0 whenever j ∈ I,

j 6= i. If g1 is an element of G which is incomparable with 0, then clearly g1 ∈ Ki1 .

If, moreover, i ∈ I, i 6= i1 and g2 ∈ Ki, then g1 + g2 = g2 + g1.
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Since G satisfies the assumption of (∗) we can suppose that G = D, where D is

as above. Choose δ1 ∈ ∆; there exists d ∈ D such that d(∆) = 0, d(Gδ1
) > 0 and

d(Gδ) = 0 if δ ∈ ∆, δ 6= δ1. Further, there exists δ2 ∈ ∆ with δ2 6= δ1 and there

is d′ ∈ D with the properties analogous to those of d with the distinction that δ1 is

replaced by δ2. Put d1 = d − d′. Then d1 is incomparable with 0, whence d1 ∈ Ki1 .

Further, d1 ∨ 0 = d; since Ki1 is a sublattice of G, we obtain d ∈ Ki1 .

Since ∆ 6= {0}, there exists 0 < g′1 ∈ D with g′1(∆) > 0. Also, there exists

0 < g2 ∈ D such that g2 > g′1 and g2 ∈ Ki for some i 6= i1. Then from the properties

of D we infer that g1 + g2 6= g2 + g1; we arrived at a contradiction. �

Hence we have Cw ∩ C4 = ∅. Therefore for any lattice ordered group G, the

assertion (∗) cannot be obtained as a consequence of (a4).

The following example shows that a lattice ordered group satisfying the assump-

tions of (∗) can be subdirectly reducible. Let Z be the additive group of all integers

with the natural linear order. Let X = Y = ∆ = Z and put G = ∆W (X × Y ).

Hence G satisfies the assumption of (∗). If d ∈ G and (by using the notation as

above)

d = (α; . . . , aδ, . . .)δ∈∆,

then α ∈ ∆ and aδ = (xδ, yδ) with xδ ∈ X , yδ ∈ Y .

We denote by A1 the set of all d ∈ G such α = 0 and yδ = 0 for each δ ∈ ∆.

Similarly, let A2 be the set of all d ∈ G such that α = 0 = xδ for each δ ∈ ∆.

Then both A1 and A2 are ℓ-ideals of G. We have A1 ∩ A2 = {0}. Moreover,

G/A1 6= {0} 6= G/A2. Thus the lattice ordered group G is subdirectly reducible.

Therefore (∗) is not a consequence of (a5).
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