[3] Hansen, O.:
The Radiosity Equation on Polyhedral Domains. Logos Verlag Berlin (2002).
Zbl 1005.65143
[5] Klein, O., Philip, P., Sprekels, J.:
Modeling and simulation of sublimation growth in SiC bulk single crystals. Interfaces Free Bound. 6 (2004), 295-314.
MR 2095334
[6] Ladyzhenskaya, O. A., Solonnikov, V. A., Ural'tseva, N. N.:
Linear and Quasi-linear Equations of Parabolic Type, Vol. 23. Translations of Mathematical Monographs. AMS Providence (1968).
DOI 10.1090/mmono/023/08
[8] Lewandowski, R.: Analyse mathématique et océanographie. Masson Paris (1997), French.
[9] Lions, J.-L.:
Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod/Gauthier-Villars Paris (1969), French.
MR 0259693 |
Zbl 0189.40603
[11] Meyer, C., Philip, P., Tröltzsch, F.:
Optimal control of a semilinear PDE with nonlocal radiation interface conditions. SIAM J. Control Optim. 45 (2006), 699-721.
DOI 10.1137/040617753 |
MR 2246096
[12] Simon, J.:
Compact sets in the space $L^p(0,T;B)$. Ann. Mat. Pura Appl., IV. Ser. 146 (1987), 65-96.
MR 0916688
[13] Stampacchia, G.:
Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Instit. Fourier 15 (1965), 189-258 French.
DOI 10.5802/aif.204 |
MR 0192177 |
Zbl 0151.15401
[16] Voigt, A.:
Numerical simulation of industrial crystal growth. PhD. Thesis Technische Universität München München (2001).
Zbl 1009.82001