Previous |  Up |  Next

Article

Keywords:
vector optimization; locally Lipschitz optimization; Dini derivatives; optimality conditions
Summary:
The present paper studies the following constrained vector optimization problem: $\min _Cf(x)$, $g(x)\in -K$, $h(x)=0$, where $f\colon\Bbb R^n\to \Bbb R^m$, $g\colon\Bbb R^n\to \Bbb R^p$ are locally Lipschitz functions, $h\colon\Bbb R^n\to \Bbb R^q$ is $C^1$ function, and $C\subset \Bbb R^m$ and $K\subset \Bbb R^p$ are closed convex cones. Two types of solutions are important for the consideration, namely $w$-minimizers (weakly efficient points) and $i$-minimizers (isolated minimizers of order 1). In terms of the Dini directional derivative first-order necessary conditions for a point $x^0$ to be a $w$-minimizer and first-order sufficient conditions for $x^0$ to be an $i$-minimizer are obtained. Their effectiveness is illustrated on an example. A comparison with some known results is done.
References:
[1] Aghezzaf, B., Hachimi, M.: Second-order optimality conditions in multiobjective optimization problems. J. Optim. Theory Appl. 102 (1999), 37-50. DOI 10.1023/A:1021834210437 | MR 1702841 | Zbl 1039.90062
[2] Amahroq, T., Taa, A.: On Lagrange-Kuhn-Tucker multipliers for multiobjective optimization problems. Optimization 41 (1997), 159-172. DOI 10.1080/02331939708844332 | MR 1459915 | Zbl 0882.90114
[3] Antczak, T., Kisiel, K.: Strict minimizers of order $m$ in nonsmooth optimization problems. Commentat. Math. Univ. Carol. 47 (2006), 213-232. MR 2241528 | Zbl 1150.90007
[4] Auslender, A.: Stability in mathematical programming with nondifferentiable data. SIAM J. Control Optim. 22 (1984), 239-254. DOI 10.1137/0322017 | MR 0732426 | Zbl 0538.49020
[5] Bednařík, D., Pastor, K.: On second-order conditions in unconstrained optimization. Math. Program. 113 (2008), 283-298. DOI 10.1007/s10107-007-0094-8 | MR 2375484
[6] Ben-Tal, A., Zowe, J.: A unified theory of first and second order conditions for extremum problems in topological vector spaces. Math. Program. Study 18 (1982), 39-76. DOI 10.1007/BFb0120982 | MR 0669725 | Zbl 0494.49020
[7] Clarke, F. H.: Optimization and Nonsmooth Analysis. John Wiley & Sons New York (1983). MR 0709590 | Zbl 0582.49001
[8] Craven, B. D.: Nonsmooth multiobjective programming. Numer. Funct. Anal. Optim. 10 (1989), 49-64. DOI 10.1080/01630568908816290 | MR 0978802 | Zbl 0645.90076
[9] Ginchev, I., Guerraggio, A., Rocca, M.: First-order conditions for $C^{0,1}$ constrained vector optimization. In: Variational Analysis and Applications. Proc. 38th Conference of the School of Mathematics ``G. Stampacchia'' in Memory of G. Stampacchia and J.-L. Lions, Erice, Italy, June 20--July 1, 2003 F. Giannessi, A. Maugeri Springer New York (2005), 427-450. MR 2159985
[10] Ginchev, I., Guerraggio, A., Rocca, M.: Second-order conditions in $C\sp {1,1}$ constrained vector optimization. Math. Program., Ser. B 104 (2005), 389-405. DOI 10.1007/s10107-005-0621-4 | MR 2179243
[11] Ginchev, I., Guerraggio, A., Rocca, M.: From scalar to vector optimization. Appl. Math. 51 (2006), 5-36. DOI 10.1007/s10492-006-0002-1 | MR 2197320 | Zbl 1164.90399
[12] Ginchev, I., Guerraggio, A., Rocca, M.: Second-order conditions in $C^{1,1}$ vector optimization with inequality and equality constraints. In: Recent Advances in Optimization. Proc. 12th French-German-Spanish Conference on Optimization, Avignon, France, September 20-24, 2004. Lecture Notes in Econom. and Math. Systems, Vol. 563 A. Seeger Springer Berlin (2006), 29-44. MR 2191149
[13] Li, Z.: The optimality conditions of differentiable vector optimization problems. J. Math. Anal. Appl. 201 (1996), 35-43. DOI 10.1006/jmaa.1996.0239 | MR 1397884 | Zbl 0851.90105
[14] Liu, L., Neittaanmäki, P., Křížek, M.: Second-order optimality conditions for nondominated solutions of multiobjective programming with $C^{1,1}$ data. Appl. Math. 45 (2000), 381-397. DOI 10.1023/A:1022272728208 | MR 1777017
[15] Malivert, C.: First and second order optimality conditions in vector optimization. Ann. Sci. Math. Qué. 14 (1990), 65-79. MR 1070607 | Zbl 0722.90065
[16] Maruşciac, I.: On Fritz John type optimality criterion in multi-objective optimization. Anal. Numér. Théor. Approximation 11 (1982), 109-114. MR 0692476
Partner of
EuDML logo