[3] Agmon, S., Douglis, A., Nirenberg, L.:
Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, II. Commun. Pure Appl. Math. 12 (1959), 623-727 17 (1964), 35-92.
DOI 10.1002/cpa.3160120405 |
MR 0162050
[7] Barbu, V.:
Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff Leyden (1976).
MR 0390843 |
Zbl 0328.47035
[8] Blanchard, D., Francfort, G. A.:
A few results on a class of degenerate parabolic equations. Ann. Sc. Norm. Sup. Pisa 18 (1991), 213-249.
MR 1129302 |
Zbl 0778.35046
[9] Blanchard, D., Guibé, O.:
Existence of a solution for a nonlinear system in thermoviscoelasticity. Adv. Differ. Equ. 5 (2000), 1221-1252.
MR 1785674
[11] Bonfanti, G., Frémond, M., Luterotti, F.:
Global solution to a nonlinear system for inversible phase changes. Adv. Math. Sci. Appl. 10 (2000), 1-24.
MR 1769184
[12] Bonfanti, G., Frémond, M., Luterotti, F.:
Local solutions to the full model of phase transitions with dissipation. Adv. Math. Sci. Appl. 11 (2001), 791-810.
MR 1907467
[13] Bonfanti, G., Frémond, M., Luterotti, F.:
Existence and uniqueness results to a phase transition model based on microscopic accelerations and movements. Nonlinear Anal., Real World Appl. 5 (2004), 123-140.
MR 2004090
[15] Brézis, H.:
Analyse fonctionnelle. Théorie et applications. Masson Paris (1983), French.
MR 0697382
[17] Colli, P., Frémond, M., Klein, O.:
Global existence of a solution to phase field model for supercooling. Nonlinear Anal., Real World Appl. 2 (2001), 523-539.
MR 1858904
[18] Colli, P., Gilardi, G., Grasselli, M.:
Well-posedness of the weak formulation for the phase-field model with memory. Adv. Differ. Equ. 2 (1997), 487-508.
MR 1441853 |
Zbl 1023.45501
[19] Colli, P., Gilardi, G., Grasselli, M., Schimperna, G.:
Global existence for the conserved phase field model with memory and quadratic nonlinearity. Port. Math. (N.S.) 58 (2001), 159-170.
MR 1836260 |
Zbl 0985.35094
[20] Colli, P., Laurençot, Ph.:
Existence and stabilization of solutions to the phase-field model with memory. J. Integral Equations Appl. 10 (1998), 169-194.
DOI 10.1216/jiea/1181074220 |
MR 1646829
[23] Damlamian, A., Kenmochi, N.:
Evolution equations generated by subdifferentials in the dual space of $H^1(\Omega)$. Discrete Contin. Dyn. Syst. 5 (1999), 269-278.
DOI 10.3934/dcds.1999.5.269 |
MR 1665795
[26] Frémond, M.:
Non-Smooth Thermomechanics. Springer Berlin (2002).
MR 1885252
[28] Ladyzhenskaya, O. A., Solonnikov, V. A., Ural'tseva, N. N.: Linear and Quasi-linear Equations of Parabolic Type. Translation of Mathematical Monographs, 23. AMS Providence (1968).
[29] Laurençot, Ph., Schimperna, G., Stefanelli, U.:
Global existence of a strong solution to the one-dimensional full model for irreversible phase transitions. J. Math. Anal. Appl. 271 (2002), 426-442.
DOI 10.1016/S0022-247X(02)00127-0 |
MR 1923644
[30] Lions, J.-L.:
Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod/Gauthier-Villars Paris (1969), French.
MR 0259693 |
Zbl 0189.40603
[31] Lions, J.-L., Magenes, E.:
Problèmes aux limites non homogènes et applications. Dunod Paris (1968), French.
Zbl 0165.10801
[35] Luterotti, F., Schimperna, G., Stefanelli, U.:
Local solution to Frémond's full model for irreversible phase transitions. In: Mathematical Models and Methods for Smart Materials. Proc. Conf., Cortona, Italy, June 25-29, 2001 M. Fabrizio, B. Lazzari, A. Mauro World Scientific River Edge (2002), 323-328.
MR 2039276 |
Zbl 1049.35096
[38] Nirenberg, L.:
On elliptic partial differential equations. Ann. Sc. Norm. Sup. Pisa, III. Ser. 123 (1959), 115-162.
MR 0109940 |
Zbl 0088.07601
[39] Rakotoson, J. E., Rakotoson, J. M.:
Analyse fonctionnelle appliquée aux équations aux dérivées partielles. Presse Universitaires de France (1999), French.
MR 1686529 |
Zbl 0929.46027
[41] Temam, R.:
Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer New York (1988).
MR 0953967 |
Zbl 0662.35001