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Abstract. The article deals with a nonlinear generalized Ginzburg-Landau (Allen-Cahn)
system of PDEs accounting for nonisothermal phase transition phenomena which was re-
cently derived by A. Miranville and G. Schimperna: Nonisothermal phase separation based
on a microforce balance, Discrete Contin. Dyn. Syst., Ser. B, 5§ (2005), 753-768. The
existence of solutions to a related Neumann-Robin problem is established in an N < 3-
dimensional space setting. A fixed point procedure guarantees the existence of solutions
locally in time. Next, Sobolev embeddings, interpolation inequalities, Moser iterations es-
timates and results on renormalized solutions for a parabolic equation with L' data are
used to handle a suitable a priori estimate which allows to extend our local solutions to the
whole time interval. The uniqueness result is justified by proper contracting estimates.
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1. INTRODUCTION

We are concerned with a Neumann-Robin problem related to a system of nonlin-
ear PDE, namely, the generalized Ginzburg-Landau (Allen-Cahn) equations which
model nonisothermal phase transition phenomena. More precisely, we investigate
the following equations:

(1) (®(0)): — A0 = o7 + Ooo; in Qr =Q x 10,77,
(2) or— Ao+ f'(0)=—0(0—0:) inQr,

(3) 0po= 0,0 +100 —6:)=0  onT x (0,T),

(4) 0(-,0) =0o(x), o(-,0)=0o(z) inQ,



where € is a bounded domain in RY, N < 3, with smooth boundary 09 =T, T' > 0
is a fixed time, (-); = 0 - /O0t, A denotes the Laplacian, 0, = 0/0n the outer normal
derivative on I'; f a double-well potential, 8. > 0 the critical temperature at which
the transition takes place, Or > 0 represents the exterior (absolute) temperature on
the boundary, ng is a positive proportionality parameter, 6y (assumed a.e. greater
than a positive constant §) and oo are initial (given) values of the unknown fields
which are here the absolute temperature # and the order parameter or phase field p.
In the above equation (1), ®: R — R is a C', increasing function such that ®(0) = 0
and there exists a positive real number p such that

p=2 if V<2,
()
2<

p<3 if N=3,
and two positive constants ¢, ¢’ satisfying
(6) er? < ®(r) < dr? VreRT.

We note that we have got rid of the precise value of some physical parameters in the
above formulation (1)—(2), since they do not affect our analysis.

Our aim in this article is to establish a rigorous mathematical analysis for our
generalized problem (1)—(4). More precisely, we are concerned with the existence
and uniqueness results to the generalized Ginzburg-Landau system (1)—(4) under
suitable hypotheses on the data. To solve equation (1), we introduce a strictly
monotone function denoted by «v: R — R which coincides with ® on R and satisfies
the necessary conditions (C1)—(C2), mentioned in the next section.

It is clear that this problem looks difficult to deal with, due to the term ®(#) and
to the presence of strong nonlinearities, especially, the term #op;. The boundedness
of p, the positivity of 6 and the existence of a lower bound 6* are the key points to
prove the local existence in time, the global existence and the uniqueness of solutions
(0, u, 0) to the system (1)—(4), where

(7) u=(0)

represents the third unknown function introduced to overcome the difficulties. The
case p = 2 and N = 3 was recently treated by Miranville and Schimperna in [37],
where they showed similar results of global existence and uniqueness of solutions.
Thus, we adapt here the techniques of [37] to prove our results.

Schauder’s fixed-point theorem is exploited twice to prove the local existence of
solutions to the problem (1)—(4). The global existence result follows from a simple
combination of the uniform a priori estimates and Theorem 4.1 on local existence.

2



The main mathematical difficulty, in proving global existence results, comes from
establishing the regularity

(8) 07 + 0oor € L*(Qy).

To have (8) in three-space dimension, we use Moser iterations procedure, Agmon-
Douglis-Nirenberg estimates ([28]) and renormalized solutions estimates of parabol-
ic PDE, with initial data in L' (see [8], [9], and [10]). The concept of renormalized
solutions has been introduced by R.J. DiPerna and J.-L. Lions in [24] and [25] to
study Boltzmann equations and first-order equations.

To prove (8) in two-space dimension, we have to discuss it according to the values
of p. In fact, by noting the same procedure as in three dimensional case, we realize
that (8), for technical reasons, is valid only for 2 < p < 5. On the other hand, making
use of the Ladyzhenskaya inequality (see [28, Chapter II, (3.1)]) and the continuous
embedding H'(Q) < L?P/(P=2)(Q) we can establish (8) for all p > 2.

Since the renormalized solution estimates are valid only in two and three-space
dimensions, in order to improve (8) in one-space dimension we use the continuous
embedding V' — L*>(0), the Gagliardo-Nirenberg inequality ([15, p. 194]) and the
Agmon inequality ([41]).

2. JUSTIFICATION OF THE MODEL

In a recent paper [36], Miranville and Schimperna introduced thermodynamically
consistent models of nonisothermal phase transitions based on a balance law for
internal microforces proposed by M. Gurtin in [27]. These models belong to a new
family of systems of equations of Ginzburg-Landau (Allen-Cahn) type. We give here
an idea on the physical derivation of these models. It turns out in [36] that, owing to
the two laws of thermodynamics and the following internal microforce balance, first
proposed by M. Gurtin in [27]:

9) div¢ +7 =0,

where ¢ (a vector) corresponds to the microstress and 7 (a scalar) corresponds to the
internal microforces (i.e., forces which arise from the interactions between atoms);
this yields the constitutive relations between the order parameter o and the temper-

ature 0
1 1
(10) 5(774—8@1#)9,5 = —fo; —a-Va,
1
(11) q:th+Bv_a

0



where 8 > 0 is a scalar, a, b are two vectors and B is, in some sense, a positive
semi-definite matrix. Then the relation

(12) C = anl/%
the first law of thermodynamics (energy equation) and (10)—(11) give the system of
equations
1 1 1 .
(13) Bot+a- Vg + Eﬁgw ~3 div(9v,9) =0,
. 1
(14) e = — le(th + BVE — gtawﬂp),

where e is the internal energy (see [36]). We emphasize that the system in this family
exhibits many similarities with the so-called “models of phase transition with micro-
movements” proposed by M. Frémond and coauthors in [11] (see also the recent
monograph [26]) and mathematically analyzed in a series of articles, among which
we quote [32]-[35].

Our system (1)—(2) follows from (13)—(14) by assuming that (56 is a positive con-
stant (which we still denote by 3), that @ = b = 0 and that B = 6?1 (I being the
identity matrix). Moreover, we take the free energy of the form

(15) b= oy 07 4 g0 6) + S o) + 5 Vol

where ¢y >0, ¢ >0, & > 0 (see [4]), p € [1, +oo[ and ¢, = ¢(p) > 0. Knowing that

(16) e= a1/9% =1 — 00y1),

it is then easy to see that (1)—(2) can be recovered (by normalizing some of the
constants). We note that the “entropic” contribution E(f) = —cy(cp/(p —1))0P in
the expression of the free energy (15) and ®() in (1) fulfil the relation

(17) E(0) — 0E'(0) = cycyf? = cy ®(6).

In general, any concave function E with E(0) = 0 might be physically admissible, in
the sense that such assumptions are sufficient to ensure the thermodynamic consis-
tency of the model. From a mathematical point of view, the choice of E(f) (and more
precisely, the corresponding term (®()); in (1)) turns out to ensure the existence
of global in time solutions, since it provides a priori information on the large value
of 6.
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Let us mention other related works. In a recent paper [37], under certain assump-
tions, Miranville and Schimperna treated the case p = 2 and ¢, = 1 (i.e. E(0) =
—cy6?) and proved the existence and uniqueness of global solutions in Q x (0,7)
with Q@ C R3. If E(f) = —cy01n6 (see the quoted works on Frémond type models),
one should probably only expect local in time existence result, at least in three-space
dimension (see [35]), due to the lower growth rate at +oo.

Our work is organized as follows. The next section is devoted to notation, as-
sumptions and statements of the main results. Section 4 is concerned with the local
in time existence result, performed by means of a fixed point procedure. Sections 5
and 6 treat the global existence and properties of solutions. This follows from a
simple combination of uniform a priori estimates and Theorem 4.1 of local existence.
Finally, in Section 7, we establish the uniqueness result and, more precisely, the
continuous dependence estimates.

3. NOTATION, ASSUMPTIONS AND BASIC THEOREM

Throughout the paper, let H = L?(2), V = H*(Q) and W = H?(Q). Identifying,
as usual, H with its dual H’', we recall that W — V — H < V' with dense and
compact injections. We denote by (-,-) the inner product in H and by (-,-) the
duality pairing between V' and V. The norm in H or in H is simply indicated
by |-| and the norm in V by || - ||. Moreover, we denote by A the Riesz isomorphism
of V onto V' and set

(18) J: V=V (Juw) :/Vvadx—f—no/vwda,
Q r

where v, w are elements of V. The norm || - ||; = (J-,-)!/? is of course equivalent
to || - || and we will use it whenever necessary. We define the scalar product in V' by

(19) ((wl,wg))* = (wl,J71UJ2).

The norm in the generic Banach space X will be generally denoted by || - || x. Some-
times, for X = LP(£2), we will write |-|,, instead of |- || L»(q), for brevity. For v € R, we
make use of the quantities v+ = max(v,0) and v~ = max(—v,0) so that v = v* —v~
and |[v| =vt +ov7.

Now, we are ready to state our mathematical problem and the related results
properly. We note that, in what follows, the following assumptions are assumed to
hold true.

First, let v: R — R be a function satisfying the following two properties:



(C1) v has the form

r)=rG(r) if r >0,
W)_{qm () ifr>0

—r? if <0,

where G: RT — R is C? with G(0) = 0, and there exists a positive real number p
depending only on the dimension N such that

p=>2 if V<2,
2<p<3 if N=3,

and two positive constants ¢y, ¢ such that
arP 2 < G'(r) < crP?, VYreRY.

We denote by « the inverse of . We shall need the sequences of functions

(20) Ye(r) = er +ne(r),
where
() i ] <
r if |r| < -,
v 19
1 1
= — 1 > —
(21) n(r) =31G(2) i r>-
1
L if r<—=
& &

for € € (0,1) and r € R. Next, we set oz =7 !. So we have
(22) ae —a and e —
in the sense of graphs (also called “G-convergence”, see [5]). Finally, we let G.
and & be respectively the antiderivatives of . and « which vanish at 0.
(C2) There exist positive constants cq 4, i = 1, 2,3, 4, independent of € such that
Ge(r) = caﬁla?(r) —Ca2 = Caslr| —caa Vee(0,1) VreR.

Secondly, referring to the above notation, we introduce the functions

g=nolr, F'(r)=f'(r)—Q+0)r, reR,



and introduce the following assumptions on the data:

(H1) 6p € V, ug =~(6p), 38 >0; 6y =26 >0 a.e. in Q,
(H2) g € H'(0,+o00; LA(T)),

(H3) 3g>0; g > g ae. in T x (0,00),

(H4) F € C%(R), F'(0) =0,

(H5) 39<0, 5>0; F'(r) <0, Vr>7, I'(r) <0, Yr <y,
(H6) 0o € W2~1/P22(Q), o< 0o < 0 a.e. in .

We set
(23) (k,v) z/gv7 YoveV.
r
Now, we are ready to state the main result of the paper.

Theorem 3.1. Let T' > 0 be an arbitrary final time. Assume that assump-
tions (C1)—(C2) and (H1)—(H6) hold true. Then the problem

(24) u +J0 = of + foor + k in Qr,

(25) or+ Ao+ F'() = —0¢ in Qr,

(26) Ono =08 +no(0 —6p) =0 onT x (0,7),

(27) 0(-,0) = 0o (x), u(-,0) =wuo(x), of-,0) = po(x) a.e. in Q

admits a unique solution (0, u, 0),

(28) 6c H'(0,T; H)NL>®(0,T;V),
(29) we HY0,T;V')NL>(0,T; H),
(30) 0 € L*(0,T;W)NHY(0,T; H) N L¥(0,T; V), o1, Ao € L*(Qr).

Moreover, we have
(31) 0<0<0 ae inQr,

and there exist two constants a,b > 0 depending only on (), ', g, 8, 0, 0 and ng such
that

(32) O(z,t) = ae™®" a.e. in Qr.

The proof of these results will be carried out throughout the remainder of the
paper. We note that we will omit the proof of several results, in the sequel, since
they are detailed in [37].



4. LOCAL EXISTENCE

We start by presenting our local existence theorem.

Theorem 4.1. Under assumptions (C1)—(C2) and (H1)—(H6), there exists a
positive constant 7' € ]0,T] such that problem (24)—(30) admits at least a solution
defined on Q). Moreover, we have

(33) 0<0<0 ae in Qjp,

and there exist two constants a,b > 0 depending only on (), T', g, 0, 0, 6 and ng such
that

(34) 0(z,t) > ac™T  ae. in Q.

Proof. We warn that, in what follows, we employ the same letter ¢ for different
constants, even in the same formula. We assume that ¢ depends only on p and the
data specified in (H1)—-(H6). In particular, this generic constant will not be allowed
to depend on T. The constants depending on further parameters (e.g., on T) not,

included in the above list will be denoted, e.g., by ¢(T"). A notation like ¢;, i € N (or
¢ (T), 1 € N) will be used to indicate specific constants whose precise value is needed
in the course of the procedure. Also, we denote by m;, ¢ € N, some continuous and
nonnegative functions defined on [0, +00).

Now, we detail the local existence result. To this aim, we apply the Schauder
fixed-point theorem to a suitable operator 7 constructed as will be specified in a

while. For R > 0, let us consider the space for the fixed-point argument
(35) 0,(T,R) = {we L?(Q4); w =0 ae. in Q4 wllLer (@, < R},

where T' € ]0, T will be determined later in such a way that 7: ©,(T, R) — ©,(T, R)
is a compact and continuous operator. The space @,,(T,R) is endowed with the
natural L?P-norm. Now, we consider the following auxiliary problems for ¢ and 6,
whose well-posedness is guaranteed by standard arguments.

Problem 1. Given R,7 > 0andf € GP(T, R), find a function p = ’Tl(é) Qp —
R satisfying

(36) o€ L*(0,T;W)nHY0,T; H) N L>(0,T;V),
(37) ot + Ao+ F'(9) = —0p in V', ae. in (0,7),
(38) 0(-,0) = go(z) a.e. in Q.
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4a. Existence of a solution ¢ = 77(f) to Problem 1

Lemma 4.1. Let (H4)-(H6) hold. Then Problem 1 admits one and only one
solution ¢ such that
(39) 0<0<0 ae in Q;.
Furthermore, we have

(40) oz IAelienip < oIV + R+ 1),

where the constant cq is allowed to depend on g, g, |2 and on ||go|w2-1/r.20(q)-

It is established in [37] that there exists one and only one solution p satisfying
Problem 1 and such that (39)—(40) hold true. Now, we introduce the set

(41) B, = 5,(T) = {v € W2(0, 75 L (Q))NL¥ (0, T, W (Q)); 0 < v < Face.},

which we endow with its natural norm. Moreover, paralleling the preceding step,
we also introduce the convex and closed set EP(T, R) which consists of the functions
0 € E, satisfying relation (40) with precisely this choice of ¢y. Now, we introduce

Problem 2. Given R,T > 0and o € EP(T, R), find a function § = 75(0): Q7 —
R such that

(42) 0c H'(0,T; H)NL>®(0,T;V), u=n~(0) e H(0,T;V"),
(43) ug + JO = k + oo, + 07 in V', a.e. in (0,7),
(44) 6(0) = 6 a.e. in Q.

4b. Existence of a solution 6 = 73(p) to Problem 2

Lemma 4.2. Let (C1)-(C2) and (H1)—(H3) hold. Then Problem 2 admits
one and only one solution 6 such that the positivity condition (34) holds, for a,
b depending only on the quantities specified in the statement of Theorem 4.1. Also,
there exist mo and my such that

(45) |‘9||H1(0,T;H) + H9||Loo(o7T”;v) < mo(R)ma(T).

Proof. First, for the outcome of our results, we have to state the next basic
lemma, which will be useful in the sequel.



Lemma 4.3. Let 1., ., and a. be as above. Then there exists a constant
a € (0,1) fulfilling

1
(46) ae? P <al(r) < o
47 <AL r) < 1
(47) e < 7(r) < aep—1

for any € € (0,1) and r € R.

Proof. Takinge € (0,1) and r € R, we have

: 0 <Aol(r) < 2
GO M)+ ey TS
1 1
— if — = <571 (r) <0,
€ — 275_1(7“) ! € 7 ()

1 1
— if v (r) > =,
e+ G(1/e) if e () €

1 1
if y71(r) < —-.
e+1/e if e (r) 3

Put X = 47 !(r) for r € R. We can easily deduce from (C1) that, taking c3 =
aa(l1+1/(p—1)) and ¢4 = c2(1 +1/(p — 1)), we have the relation

(49) e3P <A (1) et V> 0.

* For 0 < X < 1/e, this yields that

m | =
o
B
o
o

(50) e<e+9(X) <

where ¢5 = 2sup{l, cs}.
* For —1/e < X <0, we get

3
(51) e<e—2X < g
* Moreover,
Cg Cyr

(52) 5<5+G(§)<§+

where ¢; = 2sup{1, ¢cg}. Finally,

(53) ese+t
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Setting a = 1/sup{3,cs,cr}, it turns out from the above inequalities that for all
reR

(54) as? ' < ol (r) €

(L

We deduce immediately that for all » € R

1

/
(55) €< 75(7') < -1

Knowing that a.(0) = 0 and integrating (54) with respect to r yields

aePr <ac(r) < Vr e RT,

™| =3

(56)
<oae(r) <aeP~lr VreR™.

™| =3

Let 7 and p be two positive constants. We define the set

(57) Hpp = Hp,u(T) ={z¢€ LQP(QT); HZ”L%(QT) < pf,

which is convex and closed in L??(Q,). To prove the existence result for Problem 2,
we introduce an approximation of this problem. Let us consider the following problem
for e > 0:

(58) u. € HY (0,7 H) N L>(0,7;V), ac(uz) € L*(0,7; W),
(59) et + J(ae(ue)) = k4 07 + ac(u)oor in V', a.e. in(0,7),
(60) Ue (0) = Ve (90) a.e. in Q.

The proof of existence of solutions to the approximating problem for (58)—(60) es-
sentially consists of the following two lemmas. The first is a well-known result on
Stefan problems (see [22, Theorem 3.3] and [23]).

Lemma 4.4. Let (C1)—(C2) and (H1)—(H3) hold, let u,7 > 0, & € H, ,,. More-
over, we assume that ¢ € LP(Q,), p2 € L*(Q,), and 1 > 0 almost everywhere.
Then the problem

(61) u=wu; € HY(0,7; H)NL®(0,7;V), ac(u) € L*(0,7; W),
(62) ur + J(ae(u)) = (k+ 1) + ae(@)ps in V', ae. in (0,7),
(63) 1(0) = v:(6p) a.e. in Q,

has one and only one solution.
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The next step consists in showing that the operator 4 +— wu, where w is the solution
furnished by the previous lemma, has a fixed point, at least for small times. We
prove this by using again Schauder’s theorem in the space H, ,. We note that we
denote by 7 this small final time to distinguish it from the final time 7" appearing in
the statement of Theorem 4.1.

Lemma 4.5. Let (C1)~(C2) and (H1)—(H3) hold and let v1, w2 be as above.
Then, for every € € (0,1) there exists T = 7(p, u,€) > 0 and at least one function
u=1us: Qr — R fulfilling:

(64) w€ HY0,7;H) N L®(0,7;V), ae(u) € L2(0,7; W),
(65) up + J(ae(u)) = (k+ 1) + ac(u)pz  in V', a.e. in (0,7),
(66) u(0) = 7: (o) a.e. in Q.

Proof. We fix an arbitrary p > 0 and denote by S the map @ — u, where

u is the solution of (61)-(63). We have to show the well-posedness, continuity, and
compactness of the operator S. Throughout the proof, all constants ¢ (or ¢(e)) will
be allowed to depend on ¢1, ¢2, in addition to p and the parameters in (H1)—(H6).
O

Lemma 4.6. Under the hypotheses of Lemma 4.5, there exists T = 7(p, p,€) > 0
such that S maps H, ,, onto itself.

Proof. Multiplying (62) by the time derivative of a.(u), then using Young’s
and Holder’s inequalities and recalling (46), yields

(67)

5‘046
wl+ 331} < @l +a@ealy + [ o2

Now, we integrate the above relation between 0 and a generic t < 7. Then, using
the continuity of the trace operator V — L2(T'), integrating by parts in time and
recalling (H1) and (56) leads to

(68) l[uell72q,) + llae(u(®)]I
@1+t + ol o, + e (@2
2
2l o + 190z + e (@) 22000, -
Applying Gronwall’s lemma, it turns out from (56) and the continuous embedding

V < L?(Q) that

l/pHuHLOO(OTLQP(Q)) CTl/pHUHQLoo(o,T;V)
e(e) Pl e ()| 0,71y < es(e)TP(L 47+ 17P).

(69) [l Z2n (o, <
<

12



Thus, for any arbitrary u, we can choose 7 (depending on €, p, and u, of course)
small enough so that

(70) cs(e)TP(L+7 4+ 1) < 1,
whence 0 € Hy, . O

Lemma 4.7. Let the hypotheses of Lemma 4.5 hold and let T be as in (70).
Then the map S is continuous and compact (with respect to the natural topology
induced in H,,,, by L*(Q,)).

Proof. We consider a sequence (tn)n C Hp,, and @ € Hp , such that

(71) @, — @ strongly in L?P(Q,),

n—oo

and set u, = S, and u = Su. Then v and u, fulfil (62) (in which @ will be
substituted by u,). Proceeding exactly as in the previous estimates (cf. (68)), we
can find a positive constant not depending on n such that

(72) lun | 51 0,75y Lo (0,7v) < €.

On the other hand, we can deduce from the generalized Aubin Lemma [40, Corol-
lary 4] that

(73) HY 0,7, H)NL>(0,7; V) cC L*(Q,)

is a compact embedding. Thus, there exist a subsequence of n, denoted by ng, k € N,
and uy € H*(0,7; H) N L>(0,7; V) such that

(74) Up, — w1 strongly in L?(Q,).

The above convergences (71) and (74) allow us to pass to the limit in equation (62), as
n goes to infinity. Moreover, thanks to the uniqueness result holding by Lemma 4.4,
the whole sequence (u,) converges to u; and we can identify u; = u. Finally, the
proof of the compactness of S can be achieved similarly owing to (68) and (73). This
yields the existence of a fixed-point for § which represents a solution to problem (64)—
(66) and, hence, to the approximating problem (58)—(60). O

We now show the positivity of this approximating solution.

13



Lemma 4.8. Let (C1)~(C2) and (H1)~(H3) hold and let T > 0, ©1, 2 be as
in Lemma 4.4, and let u be any solution to (64)—~(66) (with 7 = T). Then u > 0

a.e. in Q.

Proof. We test (65) by —u~ and obtain

(75) 1d u”|? +/ o (u)|Vu~|? dz — ng / ac(u)u” do
Q r

2dt
—|—/ p1u” dx—i—/gu‘ daz—/ag(u)g@u_ dz.
Q r Q

First, it follows from (46) and (56) that

(76) / oL (w)|Vu~ |2 dz — ng / ac(u)u™ dz > ae? Hju~||%.
Q r

Secondly, letting ¢ = 2p/(p — 1) then

q>2 if N <2,
(77)

2<q<6 if N=3,

and, hence, the embedding V' — L9(Q) is continuous. Finally, using the fact that ¢
and 7 are nonnegative and combining (75) and (76) yields

1d, _ 1y — _ -
(78) STk 2+ ae?HjuT |5 < ag? pz|apluT lqluT|
asP~t _
< 115 + cloal3,lu [
An application of Gronwall’s Lemma implies that ©~ = 0 a.e. in Q,, as desired, due
to (H1). O

Now, we aim at establishing the lower bound for the approximating solutions
holding by Lemma 4.5.

Lemma 4.9. Let (C1)—~(C2) and (H1)—(H4) hold and let T,R > 0. Let also
01 = 07 and 3 = ppi, where g € E,,(T,R). Then, given any solution to (64)—(66)
(with 7 = T') and setting § = a.(u), 6 satisfies (34) (where a, b depend on other
quantities as specified in Theorem 4.1).

Proof. We start by noticing that the functions 1 and 5 satisfy the assump-
tions stated in Lemma 4.4. Then we rewrite relation (65) as

07-(0
(79) D) | g0 = (ke +01) + 0,
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where we have set § = ac(u). Let ¢ > p. We multiply (79) by —0~7 and integrate
over Q, t < T. From (H3) we deduce the relation

t /
_//Lwetdxds
do ds
q—l //‘ 9la— 1>/2‘ ddeg// // dzds
<n//dads //
= o Jr 0171 fa—

We treat the above inequality term by term, separately. First, we have

//””6 0, dz ds
1L(0)
q—l/@‘l 1 q—1/9(1 T // L‘)tdxds.

The last term in the above equation is written as

(82) - /0 /Q ”ée(f) 0, da ds = /Q £ 4(0(t)) dz — /Q £.4(0(0)) dz
where
(83) eqlr) =— / % ds, Vre (0,+00).

Let w: © — [0,400) be a positive measurable function. Then

1/e w(x)
09 [ Gtwtonao= - [ [ ESnar [ [ D
1/5 1/e
|Q|/ ds+/ / 7(s) dsdz
{e€; w(z)<1/e} Juw(z) S

—G(—)/ /w(x) dsdx
€ {zeQ; w(z)=1/e} J1/e 51

15



On the one hand, from (84), (49), and (C1) we obtain

(85) / e olw(x)) dz

1/6 dS 1/6 dS
2—049/ —+C3/ / ——dx
“ si=pt {2€Q; w@)<1/e} Juw(z) s
w(x) d
— G / / —S dz
Q 1
>_M(1_Eq p)+c_3/ (77_51—1))(1JU
q—p 4 =P J{zeQ; w(x)<1/e} wa ;D(x)

p—1 1
(A ey,
q—1 Jo\wi~(z)
C19Q(es +ca) 7RO

q—p qg—1

WV

+ c3 / dx n c / dz
qd— P J{zeQ; w(z)<1/e} wq—p(x) q—1Ja wq—l(x)

WV

dx n c / dx
4 =D Jizeq; wy<ijey WIP(E)  g—1 Jquwi=l(z)

On the other hand, it follows from (84) and (49) that

( ) 3 ( ) 1/e ds
o ) {zeQ; w(z)<1/e} Jw(z) gq—p+1

S = / ,1 dz.
q—7p {z€Q; w(z)<1/e} w9 p(x)

At this stage, due to (80)—(86) and (H1), we have

€ dz 4q
57 q_1/99q*1(t)+(q—1 //‘VG(‘I 1/2‘ dzds
cs / dx L / dx
(2€9; 0z, )=0()<1/e} OTP()  q—1 /g 0971(2)

+g//dads // d ds

no//dads // - _5|1()2;q_1
cq|Q2
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Secondly, the first term of the right-hand side of the above inequality is bounded as
follows:

(88) no//eq : //dads ‘ 2ZO)t'

We obtain owing to Young’s inequality and (41) that

00t
(89) —// a1 Tdrds = — // 9= /29072 dzds

<z //Qtdxds—i— //m da ds
<5 // dxds+c//(;‘§_(i;
S gy LSS [
<z // dxds+c// dz ds
(2e0; 0(a5)<1/e) 07 P (@, 5)

dx ds
q 01— ga-1

It follows from (87)—(89) that

€ dx
¢ / n / dx
9 =P J{zeQ; 0(z,t)=0(t)<1/e} g1— p( ) qg—1 Q Hq—l(t)
//dads // s
// dxds //dxds c 2n0)t+ct
{er 0(z,s)<1/e} 09> (x, s) ga—1 g

+c

(q—1)9‘1 D p)9‘1 P

for all € € (0,1). The positive constants ¢ are independent of ¢, €, and ¢. In order to
reduce the notation, we set

(91) Uq(s)z/{ _dz e

z€Q; 0(x,s)<1/e} 04 p(x, 3)
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Thus, (90) entails

c3 c dx
” it [ e
(92) q—p o) q—1Jq 0971(t)
t trdeds e dng\e
< - (==
\c/o Uq(S)dS+C/O = +q( 7 )t+ct
c n c ‘e
(-1 (¢—po" "
We set
1 74ng\¢ 1
D)= —(=2)t+t+ + +1,
v ‘1( g ) (-1 (¢—p)a*?

y(t) = / 0a(s) ds,
Q

z(t)z/ot dzds

fa-1-
We deduce from (92) an ordinary differential inequality of the form

(93) /(0 + /() < elylt) + 2(6) + Do)

We multiply by e=¢(¢=D* and then integrate between 0 and t < T to obtain

(04) y(t) + 2(t) < e(T)eo ",

Consequently, (92) becomes, for any ¢ > p and any ¢ € (0,7),

=

2n0\4 1 g—1 1 1
<e (—)t+ — 1)t + + + (g —1) pecla=Dt,
{ g (@=1) 0t q—pgr? (@=1) }

Finally, it follows from the above estimate that

(96) 107 (2, 1)l La-n(y < 2@ P TLGL/ @D (1) 4 21/ (@)=Y (7P

< 023/(qp){(%)q”q_p)tl/(qm + (¢ — 1)1/(q7p)t1/(q7p)

q— 1\/(a-p) 1 1 1/(a—p)
+ (q —p) g " gavian ta-
x ectla=1)/(¢=p) | 21/(q7p)71|Q|1/(q—p)6’
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where the positive constants ¢ are still independent of ¢, ¢, and €. Now, letting
q — oo yields

1 N
(97) 107w < eof g+ T+ 1feT 45 Ve (0),
where cg, c10 only depend on g, 9, |2 and |I'|. In particular, (97) holds true for
e = 0. Thus, denoting 6, = ae™"" with 1/a = co{1/0 + no/g + 1} and b = c19, we
deduce that 6 > 0, a.e. in Q4. O

The next lemma concerns the global existence of the solution to the system (61)—

(63).

Lemma 4.10. Let (C1)~(C2) and (H1)—~(H3) hold and let T > 0. Let also 1,
2 be as in Lemma 4.9. Then there exists at least one solution u: Q7 — R satisfying

(98) we HY0,T; H)yN L>=(0,T;V),
(99) w4+ J(a(u) = (k+¢1) + alu)ps inV', ae. in (0,7),
(100) u(0) = v(6o) a.e. in Q.

Moreover, 0 = a(u) satisfies (34).

Proof. We will now denote by wu. the approximating solution given by
Lemma 4.5. Our aim is to derive a priori bounds on u. which allow us to pass to
the limit when ¢ goes to zero.

We first test (65) by a.(ues) = 6. and then use the continuous embeddings L? () —
V' and V < L1(Q) for ¢ = 2p/(p — 1) to obtain

d . 1
(101) &/ﬂae(ue)dx + 3 lloc(ue)l3 < clnl + 1517 + elial3,lae (ue) -
By (C2) we have

d 1
(102) gl (e)l1 + 5||Oée(ue)|\3
< clorl2 + kT + cleal3,lde (ue)l1 + clpal3,-
From Gronwall’s Lemma we infer that
(103) e (ue)(®)1 + llee(ue) 720,01

t t )
T 2
Sc(l—l—/o |¢1(s)|§ds+||k||2L2(07t;V,)+/0 |<p2(8)|§pds>ecfo lez(s)lz, ds
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Moreover, applying Holder’s inequality with respect to time and using the fact that
o€ Ep(T, R) yields that, for any ¢t € (0, T),

t t
(104) [ erRas= [ lafds < 20D ol
0 0
< CT(P—Q)/P(TQ/QD + R4 + 1),
t t
(105) [ ey ds = [ loas,ds < 20 ol
0 0

< eTP=V/p(7P 4 R2 1),
Finally, it turns out from (103)—(105) that

(106) ||d€(u5)||ioo(07’f“;Ll(Q)) + ||04€(u5)||2L2(07T;V)
< C(l + T(P—Q)/P(T’Q/P TR 1) + T(P‘U/P(Tl/i” T R4 1))
% ecf(p—l)/P(Tl/p+R2+1).

Next, we consider the (equivalent) expression (79) and test it by 6 to obtain

(107) cloa + [ Oar(0.) do+ 51015

< /gpﬁgtdx—i—/g&tda—f—/ 200 dx.
Q r Q

Now, we aim to estimate separately the three terms on the right-hand side of (107).
Concerning the first, it follows from (C1), (49), Holder’s and Young’s inequalities,
and Lemma 4.9 that

¥

(108) /Q 10z dz = /Q W[ng(ee)]wed da
1 Gl

A dx
4 / aulel /Q VACH!
1 / Gt
— (0 dx—l—/ dx —|—/ dz
4 =t <173 7'( (0.>1/e1 G(1/¢)

2
/ 02,1 (0.)dx + ¢ SOEI dx + ceP™t / o3 da
{o.<1/e} 02 {0->1/¢}

/92%(9 )dz + e’ iy 2,

//\

N

//\

//\

4
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where the positive constant ¢ is independent of . The second term can be controlled
as the first:

1 0c)?
(109) /<p29 0t dx < /92t775(95)dx+/ (<P/2 ) dx
Q 776(95)
1

4 / 9215775(95) dz + Ceb(pil)jﬂ / (50295)2 dz
Q

1
4
1
4

//\

//\

/ 9215775(96) dz + Ceb(pil)T|502|gp|96|gp/(;0—1)

//\

/ 02, (0.) da + @ DT |02 119,12,

where ¢ is independent of . Combining (107)—(109) yields

1 1d
(10)  el0al + 5 [ k(0o + 331003

< /g9etd0+ce DT (1021103 + i1 [2).
N

By applying Gronwall’s Lemma, we deduce from (104)—(105) that

(111) //t%ms )dads + [|6-(t)[|5

< c</ / gl.1 dods + ceb(pfl)TAT(p*Q)/p(TQ/p +R* +1)+ 1>
0JT

% eceb(p—1)TT(P—1)/p(T1/p+R2+1)

Now, we integrate by parts with respect to time. It turns out that

(112) // 2 (6.) dds + 0-(8)]2
g(/ da—//98gdads

+ DT P22/ 4 R4 1) 4 1)eceb@1>ff<p1>/P<T”1/P+R2+1>

1
< Z”HE(t)HQ + (9l 0,602y + 1072061
+ eb(pfl)TT(p72)/p(T2/p + R4 + 1) + ]_)eCeb(p_1)TT(p_1)/p(T1/p+R2+1).
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From (H2) and (106) we deduce that

(113) / / 02,n.(0:) dz ds + 6. HLoc(o %)
< o1+ VT EE-DIn({r 4 R4 1)
+ T V/(TVP 4 B2 4 1))ece”‘P—1>TT“<P—1>/P<T“”P+R2+1>.

Moreover, due to (49) and (C1), the above inequality can be written as

t
(114) c/ / 0P 162, dx ds
{0-<1/<}

2
R 1//{9521/5 02, dw ds + [10:]17 < 1)

c(l + b= DT (o= 2)/1)(T2/p + R +1)+ jv(p—l)/p(jvl/p + R4+ 1))

ce?@=DTpe-1/p(P1/P 4 B2 11)
X e ,

where the positive constants ¢ are independent of ¢. Finally, we deduce from
Lemma 4.9 that

< C(eb(p nT | e2b(p DI pp=2)/p(72/p 4 R4 4 1)
+ eb(pfl)TT(pfl)/p(Tl/p + R2 + 1))eCeb(p_1)TT(p_1>/p(T1/p+R2+1).

The right-hand side of (115) does not explode as R or T goes to 0, since the preceding
¢’s do not. Thus, by the generalized Aubin Lemma (see, e.g., [40, Corollary 4]), we
have (here and below, all the convergences are understood up to the extraction of
subsequences, not relabelled)

(116) 0. — 6 strongly in C°([0,77; H)

for some limit 6. Next, thanks to (115) and the continuous embedding V — L5(Q),
we have

(117) 6 — 0 weakly in L>(0,T; L5()).

Thus, it follows from (117) and (C1) that

(118) ue —>u weakly in L%(0, T; LS/7(2))

for some limit w. This allows us to pass to the limit in (65) and obtain (99); indeed,

using e.g. [7, Proposition 1, p. 42], we have 6 = a(u) a.e. O
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Lemma 4.11. Let (C1)~(C2) and (H1)~(H3) hold and let T > 0. Let also 1,
@2 be as in Lemma 4.9. Then system (98)—(100) has a unique solution defined in Q ..

Proof. We consider a pair of solutions u; = v(61), uz = y(62) to the sys-
tem (98)—(100).
Let w = uy — ug, 6 = 61 — 03. Then we have the equality

(119) up + JO = o).
We note that if v € V and w € H then
(Ju, J7'w) = ((Jv,w))e = ((w, Jv))s = (w, ] (Jv)) = (w,v).

Hence, testing (119) by J 'u, we get

1d

120 ——||ul||? +/9udx= 0o, J1u).
(120) splul + [ dude = (a0.571)

On the one hand, it is easy to see that

1
(121) (61) — ~(62) :/ +/(501 + (1 — $)05)0 ds.
0
Then, in view of (49) and (34), it turns out that
(122) / Oudz > c11]0)?,
Q

where ¢17 depends on p and .. On the other hand, combining (120) and (122) and
then using the continuous embedding L2/(P+1)(Q) «— V yields

1d
(123) 55”“”%//,] + |0 < ullve, s 10p2llve, s

cllullve,71002]2p/(p+1)

~ C11
(D) |ullf slw2l3, + =161

<
< cllullvslg2lapl)
S 2

Thus, the thesis follows by integrating the above inequality in time and applying
once more Gronwall’s Lemma.

Moreover, (45) holds by properly choosing mg and m, since all the above constants
and in particular, ¢; (R, T), i.e. the right-hand side of (115), do not explode as R or
T or both become small. 0
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The proof of Lemma 4.2. is completed. O

4c. Existence result in Theorem 4.1: Fixed-point argument applied to
the operator 7, 0 74

Having 77 and 75, we define the operator 7 as the composition 73 o 7;. We have
to show that, at least for small times, Schauder’s theorem applies to the map 7 from
0,(T, R) into itself. In other words, we will prove that there exists 7' = T'(R) > 0
such that 7 possesses the properties stated in the following two lemmas.

Lemma 4.12. There exist R, T = T(R) > 0 such that

(124) T(0,(T,R)) C ©,(T,R).

Proof. Our aim here is to find 7' > 0 such that the operator 7 : G)p(’f, R) —
0,(T, R) is well-defined. Exploiting the preceding estimates (cf. (115)), by the
Sobolev embedding V — L?P((2), we have

(125) ||9HL2P(O,T;L2P(Q)) < CH‘9||L2p(0,T;V)
< CT1/2p|‘9||Loo(0,T;V)
< Clzfl/zp(e%b@fl)T“ + VT Pr=2)/2p(71/p 4 B2 4 1)
+e%b(wlﬁf(pfl)/zp@l/zp +R+1))

% eCISBb(p—1)TT(p—1)/P(T1/P+R2+1)

Hence, for any R > 0, we can choose T sufficiently small such that

(126) c1oTY/?P (e%b(Pfl)TA 4 SEDTPE=2/2( 1/ | B2 4 1)
+e%b(pfl)TAT(Pfl)/Qp(jﬂl/% +R+1))
o ge1ae"PTDTTE=D/ (PP LR 1) o p
and ensure that 6 belongs to GP(T, R). 0

Lemma 4.13. Let T > 0 be as in (126). Then T is continuous and compact
with respect to the L?P-norm.

Proof. We start by showing that 7 is continuous with respect to the natural
topology induced in @p(T,R) by L?’(Qz). To this aim, we consider a sequence
(n)n € ©,(T, R) such that

(127) 0, — 60 strongly in ©,(T, R)

n— oo

24



and consider the sequence (g, ), of solutions to (36)—(38) with § substituted by 6,

(128) on =Ti(0n).

The standard energy estimates for the parabolic equations give a positive constant ¢
not depending on n such that

(129) ”QnHHl(O,T;H)QLOO(O,T;V)OL2(O,T;W) se

By the well-known weak and weak* compactness results, there exists a subsequence
of n still denoted by n, for the sake of brevity, such that

(130) on — o weakly in H'(0,T; H) N L*(0,T; W),
(131) on — o weakly™ in L°°(0,T; V).

Moreover, by the Aubin-Lions Theorem (see [30] and [31]), we also obtain the strong

convergence

(132) 0n — o in L?(0,T; H).

n— oo

The above convergences (127) and (132) allow us to pass to the limit in equation (37).
Moreover, thanks to the uniqueness result holding by Lemma 4.1, we conclude that
the whole sequence (o, ), converges to ¢ and we can identify o = ’Tl(é)

In the second step, we consider the sequence (6,,), of solutions to (42)—(44) with
o substituted by o, i.e., we consider, in particular,

(133) On = T2(0n) =Tz 0 ,Tl(én) = T(én)

Proceeding as in the previous estimates (cf. (68) and (115)), we can find a positive
constant ¢ not depending on n such that

(134) <e.

||9n||Hl(o,T;H)mLoo(o,T;V)

Hence, there exists a subsequence of n still denoted by n such that
(135) 0, — 0 weakly* in H'(0,7; H)N L>®(0,T;V).

Furthermore, we deduce from the generalized Aubin Theorem (see [40, Corollary 4])
the strong convergence

(136) 0, — 6 in C°([0,T]; L*(Q)),

n—00
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which implies that
(137) 0, — 6 in L?(0,T; L**(Q)).
n—oo

The above convergences (132) and (137) allow us to pass to the limit in rela-
tion (43). Again, thanks to the uniqueness result furnished by Lemma 4.2, the whole
sequence (f,,), converges to 6 and we can identify

(138) 0="T(0) =Ta0Ti(0) =T(0).
Finally, by (137), we have
(139) T(6,) — T(0) strongly in L?P(0,T; L*(Q)).

This completes the proof of continuity of the operator 7.

It remains to show that the operator 7 is compact. Since 7 is continuous and
0,(T, R) is a closed set, it suffices to show that 7(0,(T, R)) is compact. To this
aim, we consider a sequence (6,), C T(@p(f, R)). Then, proceeding exactly as for
the previous estimates (cf. (68) and (115)), we deduce the existence of a positive
constant depending neither on n nor on the choice of 6, in ©,(T, R) such that

(140) Hgn||H1(0,T;H)mL°°(O,T;V) Se
We note that, owing the generalized Aubin Lemma (see [40, Corollary 4]),
(141) HY0,T; H) N L>(0,T;V) cC L*(Q4).

Consequently, (140) together with (141) imply that there exists a subsequence of n
still denoted by n and 6 € H*(0, T H) N L>(0, T V') such that

(142) bn — 0 in L*(Qy),
which ensures that the operator 7 is compact. (Il

Thus, we have proved that 7 admits a fixed point in 0, (T, R), i.e. there exists at
least a local in time solution to system (24)-(30) defined on the interval |0, 7[. The
proof of Theorem 4.1. is complete. U

Now, we have to discuss the extension of this solution to the whole interval ]0, T
for an arbitrary final time 7" > 0. To this end, we derive some additional a priori
estimates which yield suitable global bounds on the solution.
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5. POSITIVITY AND BOUNDEDNESS
Lemma 5.1. Let (C1)~(C2) and (H1)—-(H6) hold, let T > 0 be any arbitrary

final time and let (6, 0): Qr — R? be a solution to system (24)—(30). Then (31) and
(32) hold.

Proof. We note that for § < 0 we have assumed that v() = —62, hence we
omit the details of the proof here, since it is similar to that of Lemma 4.1 in [37]. In
the rest of the paper we denote by ¢ a universal constant which depends on p, the
data mentioned in (H1)—(H6) and on T O

6. UNIFORM A PRIORI ESTIMATES

Lemma 6.1. For every t € [0,T], we have

(143) ||9Hgoo(o¢;1;p(g)) + ||QH%°°(O¢;V) se

Proof. We can consider, due to (32), that v(¢) = ®(#). Multiplying (25) by o
and (24) by 1, integrating over Q; for t < v and adding the resulting equalities yields

(14a)  GleIF + [ Flo®)do+ [ 200z

Q

1 t
= Haol+ [ Flovyas+ [ @onyar+ [ [ gasas
Q Q 0 Jr

Then, it turns out from (C1), (H2), (H6), and (31) that

(145) SloI? + ez <

from which the conclusion of this lemma follows. O
Lemma 6.2. We have

(146) llella0.6:m) < e

Proof. Since p > 2, from (143) we have

(147) H9||L2(0,t;H) < |Q|1/271/pT1/2||9|\L°c(0,t;LP(Q)) sec
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We first multiply (25) by ¢, then integrate with respect to  and ¢ and finally use (31)
to deduce that

1
148) Lo + 3ol < [ [ 1onlaras+ [ RG] as
< max(—,0)|10]| z2(0.¢:m) 10t | L2 0,4:11) + (0,0, [€2])-

Thus, (146) follows from (148) by using (147) and applying Young’s inequality. O
Lemma 6.3. We have
(149) lellLzo,6w) < e

Proof. We test (25) by Ap to obtain

1d
1 24 1 Apl? < cl6]?
(150) S ol + 3ol < clof? +
which results in (149) by integrating with respect to ¢ and using (147). O

Now, we give a basic lemma which plays an important role in the sequel.
Lemma 6.4. We have
(151) el T 0.6y + leellTzqo,ivy < €+ cllbellLaoum-

Proof. We differentiate (25) with respect to time,

>0

(152) e

+ Aot + F"(0)or = —001 — 00+,

then we multiply (152) by o; and integrate over Q¢, t < v. Thus, it follows from (31)
and (146) that

1
(153) Sle: (M) + llecl 720,00

¢ ¢ ¢
—//F”(g)(gt)2 dmds—//@(gt)Qdmds—/ / 00:0; dx ds
0Ja 0 Ja 0Ja

t
<mm%ww+ﬁnwwmmwmm

< CHQt||2L2(0,t;H) + HQ”L‘”(Qt)HQt||L2(O,t;H)HetHL2(0,t;H)
< e+ |0l 220,61 -
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Lemma 6.5. We have

(154) 01z 0,651y + 10l Loe(0,65v) < €
Proof. We distinguish three cases according to the dimension N and the
exponent p:
First case (N =2,2<p<b)or (N=3,2<p<3):
Let
wl =9,
(155) P2 = Boor + (01)*,
P =11 + Pa.

To prove (154) in this case, we have to use the so-called renormalized solution (see [8],
[9], and [10]). We recall the definition of the renormalized solutions.

Definition 6.1. Let K > 0 and r € R. The quantity
(156) Tk (r) = max{—K, min{ K, r}}

is called the truncation function at height K.

Definition 6.2. We assume that
(A1) B is the field of symmetric coercive matrices defined on Qr with bounded
coefficients; i.e.,
* (B)ij = bij € L>(Qr),
* by =bj for 1 <i<N,1<j<N,
* there exists A > 0 such that B(z,t)¢ - & > M||¢]|2 for any £ € RY and for
almost every (z,t) € Qr;
(A2) b: R — R, is a C! increasing function such that
* b(0) =0,
* there exist d,s > 0 such that |b(r)| = d|r|®, V|r| > 1;
(A3) g is a measurable function defined on (2 such that b(vy) € L'(Q);
(A4) G € LY(Qr).

Then a measurable function v defined on Q7 is a renormalized solution of the problem

81{;(;’) —div(BDv) =G in Qr,
P(G,UO) b(U)|t:0 = b(’(}o) in Q,
v=0 on I" x (0,T),
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if v satisfies

(157) b(v) € L=(0,T; L' (Q));
(158) Tx(v) € L*(0,T; H}(Q)) for any K >0

for any function S € C°°(R) such that S’ has a compact support (i.e., S" € S €
C5°(R)),

(159) w —div[S"(b(v)) BDv] + S" (b(v))V' (v)BDv - Dv = GS’ (b(v))
in D'(Qr);

(160) S(b(v))|t=0 = S(b(vo));

(161) lim V' (v)|Dv|* dz dt = 0.

n—-+o0 {(z,t); n<|b(v)|<n+1}

Remark 6.1. Under hypotheses (A1)-(A3) and for any G € L'(Qr), it is es-
tablished in [10] that there exists at least one solution v satisfying Definition 6.2.

The next lemma can be found in [9]. It establishes the most important property
of renormalized solutions of the nonlinear parabolic problem P(G, vy).

Lemma 6.6. Let v be a measurable function defined on Q7 and let o > 0 be
such that

(162) 0|7 € L=(0,T; L)),
(163) VK >0 Tk(v) € L*(0,T; H}(Q)) with / |DTx (v)]? dzdt < K M.

T

Then for all 1 < ¢ < 1+ 20/N there exists a constant ¢ depending only on T, , q,
and o such that

c12/(20+N .
(164) ol aar) < elllol” FEG i gy MY 7).

Proof. For any positive real number r, we first write

+oo
(165) / [v|?dzdt = /0 meas{(x,1t); |v(z,t)|? > s} ds
= /Or meas{(z,t); |v(z,t)|? > s}ds
+oo
—|—/ meas{(z,t); |v(z,t)|? > s}ds,
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which leads to
+o0o
(166) ||1)Hqu(QT) < rT|Q| +/T meas{(z,); |v(z,t)|? > s}ds.

The last term in the above inequality is bounded as follows:

c

. q
(167)  meas{(x,t); |v(z,t)|? > s} < A(NTo)/Ng

/ T )0 (0) PV +/N g,
Qr

In fact, we have

c

(168)  SwTo/~q

/ T (0) ZV+V/N g
Qr

C
> oo | Ty (0) PO da i
sPNH/NG Jo i) @ t)|a>s)

Rewriting Tk in the form
169 T r if |r] < K,
T) =
(169) K (r) . £ 1> K
yields, for any |v|? > s,
(170) Tyi/q(v) = sY/4.
Thus (167) follows by combining (168) and (170).
On the one hand, it turns out from the classical interpolation inequality (for

N =3) that

(A7) (| Tosa () L2vsorm (@ry < el Tarra (150 1o 1 Ts17a OG0, 7,10 (52))

with
N o«
2(N 2’
(172) (N +0)
N _ n l1—«
2(N+o0) 6 r’
which leads to
N
o= ,
(173) { N+o
r=o
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Moreover, we know that, for any K and v, we have

(174) Tk (v) < |v].

Then, using the continuous embedding V — L5(f2), we infer that

(175) |1 Tarsa )| p2ovsorrn(@ry < ellTursa @)1 oo 1 Tera I T 7
< ellol” 1280 oz (a1 DTaasa (0) | 22 -

On the other hand, Gagliardo-Nirenberg’s ([15, p. 194]) and the classical interpola-
tion inequalities (for N = 2) imply

(176) [ T1/a (W) Locvor/n @y < €l Tarra () Lol oy 1 Tt )1 220,717y
with
1 rIN
oa=1— 77—,
(a77) 2(N +o0)
. ON
—a=1-—
(N +o0)
which leads to
N
o =
(178) { N+o’
r=o
Thus, we get
o/(N+o N N o
(179)  T1/a ()| p2vorsn @y < el Tarsa ()G L oy 1 Torra @I o)

Finally, we conclude that, in the cases NV =2 or N = 3, we obtain the same form of
estimate which reads

(180) /Q |Tsl/q (,U)|2(N+U)/N de dt < C|||’U| ||L°° 0,T5L1(Q)) HDT;Uq (’U)H%Q(QT).
T

Consequently, returning to (167), it follows from (163) and (180) that

181 meas{(z,t); |v|? > s} < ¢ Ms'/a,
(181) {(@,1); |v|

< e 1V 10721 (0))

Therefore, (166) becomes

+oo
(182) P71 + ellol 2 (Q))M/ 5~ (N+20)/Na g
i

||’UHLq(QT) Lo(0,T; L1
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The second term on the right-hand side of the above inequality represents a gener-
alized integral which converges only if

N + 20
1 —_ J—
(183) Ng ;
ie.
20

184 1+ —=
(184) ¢<l+=
and, hence, we have

+oo N
1 ~(N+20)/Nq g — _ q (N(1-q)~20)/(Nq)_
(185) ‘K s TTN(I—q 20

Thus, it follows that, for all 1 < ¢ < 14 20/N, we have

o112/N 1) —20
(186) ||UH%<1(QT) < T.T|Q| + CH|U| ||L/00(07T;L1(Q))M7A(N(q 1) 2 )/(Nq)
Now, let
(187) g(r) = rT|Q| + ¢||[o]7 | 22X Myr(N(a=1)=20)/(Na).

Lo (0,T;L' ()

and let 7* > 0 be the point at which g(r) achieves its minimum. Then we deduce
from (186) that

(188) [0l < 90°).

It is easy to see that ¢'(r*) = 0 corresponds to

o ||2/N .
(189) . _ M(N(q—1)—20)|||v] HL/OO(O’T;LI(Q)) gN/(N+20)
e GNT[Q] :

and then (164) is established by combining (188) and (189). 0

The previous lemma allows us to establish the following estimate to our solution 6.
More precisely, we use a variant of this lemma, since we have different boundary
conditions; however, the proof is the same.
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Lemma 6.7. For all 1 < ¢ < 1+ 2p/N there exists a positive constant c(q)
independent of v such that

(190) 10l a0y < c(a)-

Proof. This result is a direct consequence of the previous lemma. In fact,
we have g € H'(0,¢; L*(T")) and L?*(T') — V' is a continuous embedding. Then we
deduce that

(191) 111 0,60 < €
On the other hand, (143) allows us to obtain that

(192) lv2llnr @ < ¢

So, in order to make sure that 6 is a renormalized solution of the nonlinear parabolic
equation (24), whose right-hand side 1 is in L'(Q;) and the initial data ®(6y) €
L1(Q), we have to show that (163) holds. To this aim, we test (24) by Tk (§) =
min(K, #) and obtain

(193) /QTK(Q)aqé—@ dzx + 014||TK(9)H2 1/)1, TK / 1/)2TK

Note that we are concerned only with the case Tk (0) = 0 (because it is very simple
to verify that (163) holds for Tk (f) = K), hence the above inequality becomes

(194) C(M%Wﬁﬁ + el T ()17 < [l lv I Tk (0) ]| + K la]a

< 74HTK( WP+ cllnllyr + Kl
Thus, integrating with respect to ¢ and using (191) and (192) leads to
(195) ITec ()72 0,101y < €1+ K).
Moreover, it follows from (C1) and (143) that
(196) ®(0) € L>=(0,t; L1 (Q)).

Consequently, (190) follows from (195), (196), and a simple application of Lemma 6.6.
0
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Lemma 6.8. Let

(197)

S

5 if N =2, % n=o
p< , 5
3 i N=3, p if N=3.

Then for all s < g < 1+ 2p/N there exists a positive constant c(q) such that

(198) 192l Lar2(@ry < ¢(9)-

Proof. We can easily verify that, when N = 2, we have 6p/5 < 1+ p and,
when N = 3, we have p < 1+ 2p/3.
Now, let h = F’(p) + fp. Then (25) becomes

(199) o1+ Ao =—h.

Since V — L9(Q) is a continuous embedding, we deduce from (143) that

(200) lellLaq,) < c

Thus, (190) and (200) yield
(201) [hllLs(q < e

On the other hand, it follows from the Agmon-Douglis-Nirenberg estimates (see [28,
Theorem 9.1, pp. 341-342]) that

2
(202) Y D IDiDelzuey < cllbllzoan + loolwe-2/mam),

7=02r+s=j
r,s=0

where D} and D? denote respectively any derivative of ¢ with respect to ¢ and x of
order r and s. Moreover, we can easily verify that ¢ < 2p, which implies the Sobolev
embedding

(203) W2—1/p72;0(Q) [N WQ_Q/Q’Q(Q),

Therefore, taking, in particular, » = 0 and s = 2 in (202), it follows from (H6), (202),
and (203) that

(204) Aol La@n < ¢
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which leads, together with (199) and (201), to

(205) lotll La(@uo)-

Thus,

(206) (00)? € LY*(Q).

Finally, (198) holds true owing to estimates (190), (200), and (206). O

Lemma 6.9. The following estimate holds:

(207) 220 < €

Proof. We know that the two dimensional case corresponds to p > 2 and if
we have also 4 € (6p/5,p + 1), then (207) will be obtained by a simple deduction
from (198) and the continuous embedding L9/2(Q;) — L?(Q;). Tt suffices to take
4 < g < p+1. In the three dimensional case, we are sure that 4 & (p,1 + 2p/3),
since assuming that 4 < 1+ 2p/3 gives p > 9/2, which contradicts our assumptions.
Hence, we have to show this lemma in the following two cases: N =3 or N = 2 with
4 ¢ (6p/5,p+1). Our idea is to combine Moser iterations estimates and (198) which
holds by Lemma 6.8.

Let go € (5,14 2p/N). Then testing (24) by 0% ~P yields, for ¢ = 0,

d 4(q
(208) qga/ﬁq‘dx—i—ﬁ/‘v glai— p+1)/2)| dx+n0/9q1 Pl 4y
i Q
< /g@qi*pda—i—/wgt_‘)qﬁpdx.
r Q

We estimate separately the terms of (208). On the one hand, we note that

4(

209) — Lo
B0 o

/‘V plai— p+1)/2 ‘ dx—i—no/@q’ p+1d0>615H9(q1 p+1 /2”

where c¢15 depends of course on ¢; and p. On the other hand, it follows from Young’s
inequality that

210 Ve Pde < [ 0% de+ [ ¢3/Pda.
(210) 5

Q Q Q
Finally, from (H2) we obtain

2(qi— i—p+1
(211) / 96% 7 o < || gl aqry 1697 | eqry < |0 PO/ ST L
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We note that (¢; —p)/(¢; —p+1) < 1. Then we deduce from the continuity of the
embedding V' — L*(T"), for any s < 4 (I" is an (N — 1)-dimensional set), that

(212) /99‘“*1’ do < c+ %Ha@wwl)/z},?,
T

where ¢ depends on ¢; and p. Then, by first combining (208)—(210) and (212) and
then applying Gronwall’s Lemma, we infer that for i =0

(213) 1611 o0 0,65 0y + [0 Lo vy < @)
Thus, (213) becomes, by using the continuous embedding V — L5(Q),
(214) 101l Loc (0,291 () + [10]| pai—v41 (0,453 41 () < €(@i)-

Now, we use the classical interpolation inequality written in the L9(0,¢; L"(Q2))-space
with

1 1-3
g ¢-p+1

215

(215) 1 1) 1-6
_—_+7
roq¢  3g—-p+1)

for 6 € (0,1). Letting ¢ = r, we deduce that

2q;

216 0= —7-——,
(216) 5¢; —3(p—1)
which corresponds to

5
(217) q= ¢ —p+1

3

Consequently, we obtain the corresponding estimate

. 5
(218) 10lLa@) < c(@), with g =2

3Qz‘—p+1

for i = 0. It becomes clear that the right-hand side of (24) is bounded, independently
in time, in L9(Q7) for ¢ given by (217). Agmon-Douglis-Nirenberg estimates allow us
to improve (198), but with this new ¢, which is bigger than that given by Lemma 6.8.
In fact, we can easily verify that

¢>1+p if N=2,

219
(219) q>1+2?p if N =3.
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Indeed, for N = 2 we have assumed that gp < qo < 1+ p, so that

8 2
(220) L+p<q<5+3p

and for N = 3 we have assumed that p < ¢o <1+ %p, which implies

2
(221) 1+ 2p<g<

3 p-

w] oo
Nele

+

Remark 6.2. This explains the reason why we have restricted gg to [gp, 1+ p)
when N =2 and to [p, 1+ %p] when N = 3. Indeed, Lemma 6.7 allows us to have qg
between 1 and 1+ 2p/N. Then we can restrict ¢ to [s,1 + 2p/N], s > 1. And, in
order to have (219), we must choose s such that

1+p<§5—p+1 if N =2,
(222)

2 5
1+§p<§5—p—|—1 if N =3,

whence our choices

s = gp if N =2,
(223) 5

s=p if N=3.

Furthermore, the conditions

p<b if N=2,
(224)

p<3 if N=3,

can be explained by the fact that we must have

gp<p+1 if N =2,
(225)

2
p<1+§p if N=3.
Now, let ¢1 € (go,q). Then applying the same procedure we deduce the existence

of a third new ¢ = %ql —p+ 1, which is even bigger. We repeat these steps of Moser
iterations on ¢ € N with ¢;11 € (gi,¢). We note that

5
(226) ¢=36-p+l>4

38



if and only if we have

3(3+p)
—

Consequently, we arrive at (213) with precisely ¢; = 3(3+p)/5+1, which corresponds

(227) gi >

to g = 1—37 > 4 in (218) (indeed, higher exponents are not allowed, since k belongs
to L?, see (H2), and we cannot go over ¢ = 4 in (198)). Finally, (207) holds true due
to the continuity of the embedding LY/%(Qr) — L*(Q7). O

End of the proof of the first case. We infer from the above estimates that the
right-hand side of (24) is bounded, uniformly in time, in H*(0,¢; V') N L?(0,¢; H).
Furthermore, it follows from (C1) that

(228) // 0)(6;)* dzds > 63//9” (6:)? dwds = e300 1041720011y

Testing (24) by 0;, then integrating and integrating by parts with respect to time
yields

p—1
639

(229) 10:11720,081) + 5 HH( )II”
<c+ C||9HL2(0,t;V) + cllgl o, nrery) + vl iz nm),

which results in (154) owing to Gronwall’s Lemma.

Second case (N = 1):

We first multiply (24) by 6, then integrate over Q:, t < v and use (33), (228),
and the continuous embedding V' <— L () to obtain

_ 1
(230) 302 10l + 10

t t t
<c+/ /getdads—i—/ /(Qt)29tdxd8+//HQQtetdde
0 Jr 0JQ 0JQ

1 t
<+ Z0ON + cllollzzo,v) +/O o]l Loe () [02]]6:] ds

t
¢ [ 10hllenl 1] s + el o220
Sc+ il\%ﬁ)ll2 +cllO1 220, + el Lo 0,6 ll0el 220,60 16el 22 0,6 1)
+ 0] Lo (0,6:20 () | 0t L20,6:v) 102 | L2 (0,811 -
Inequality (143) and Young’s inequality yield
3 o110 112 1 2
(231) L0003 0,0, + 7100
Sc+ CH9||2L2(O,t;V) + C|\Qt||2Loo(o,t;H)HQtH%z(o,t;V) + C||Qt||2L2(O,t;V)'
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Now, we have to show that  and p; are bounded in L?(0,t; V). So, we establish the
following lemma.

Lemma 6.10. In one space dimension we have
+1
232)  10e 0y + 1015 epmes oy + Nelm 0w + etz <

Proof. We test (24) by Ap:, then integrate between 0 and ¢ < v and use
Agmon’s inequality

(233) lull =y < el 2 VeV,
(31), (143), and (149) to obtain
2 1 2
(234) ||Qt||L2(0,t;V) + §|A9(t)|
t t
<c+c/ ||F'<g>||||gt||ds+c/ 16alllecll ds
0 0
t
<cte / (F"()V el + |F'(0) }or] ds
0
t
+c/ {1oV6 + 0Ve| + 8ol ]l ccl ds
0
t t t
<c+c/ |v@||\@t||ds+c/ ||gt||ds+c/ loll =) [ V61l 2¢] ds
0 0 0
t t
e / 01 ol e lloc]| ds + ¢ / el 61llec] ds
t t
<c+c/ ||@||||gt||ds+c/ el ds
0 0

t t
e / ol ey (IV6] + 8|2 ds + ¢ / 181,V el et ds

e+ 21+ lloll Lo 0,6v)) 0t 2 (0,4
+ clloll Lo 0,6y 101l L2 (0,:v l0e Nl L2 0,651

+cll0ll Lo (0,::Lr ) 10l L20,6;w) | 0t L2 (0,67

1
< et gllediao) +erolflliao).

On the other hand, testing (24) by 6 and noting that

(550) = 3 f, 0
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where 1) is the antiderivative of the function defined on R* by r +— r®'(r) which
vanishes at 0, we immediately infer that

c d

2
(235) p+1dt

1

1

16151+ 5||9||3 < |0l oo ) 10]p| e + €10 | 0c[F + cllk[I3-
The Gagliardo-Nirenberg interpolation inequality (see [15, p. 194]) implies that
(236) |ot]a < cloel**loe] /.

Then by integrating with respect to time, we obtain

c 1
(237) mIH(t)I,’ii} + §||9||%2(o,t;\/)

< |0l Lo 0,650 @) 1€l L2 0,650 [l 0t | L2 0,5 11)

3/2 1/2
+ el0ll oo 0,50 167500 4500 10t oo v + ellEl 20,60

Young’s inequality and (143) yield
¢ p1 Ly
(238) m|9(t)|p+1 + 1||9||L2(o,t;\/)
< 5H9t|\%2(0,t;\/) + 0(5)||Qt||2L2(O,t;H) + CH/‘J”%Z(o,t;V')
for § > 0. Now, summing (234) and (238) multiplied by 8c16, we obtain the relation

1 1 & 1
(239) §||Qt||2L2(o,t;V) + §|A9(t)|2 + m|9(t)|gi1 + 161017 200,v

< 80166||Qt||%2(0,t;v) + 0(5)||Qt||2L2(o,t;H) + C||k||%2(o,t;w)~

Taking 6 < 1/(16¢16), (232) follows immediately from (146).
We return to (231) and deduce

C3 1
(240) 5 0% 166l 20,4y + 1||9(t)||2 < c+clledFoe .10
It turns out from Lemma 6.4 that
241 % gp=1|g, |12 Lo < 0
(241) 3 U [ t||L2(O,t;H)+1” O < e+ cllbell2(0,6m),

which results in (154).
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Third case (N =2, p > 2):
We multiply (24) by 6; and then integrate over Q:, t < v to obtain

_ 1
(242) 3021012 0,00 + 510
¢ ¢ ¢
< c+/ /g@t dads+/ /(gt)QOt dz ds —|—/ / 000.0; dz ds
0Jr 0Ja 0Ja
1 2 2 foe
S e+ IO + cllfllz2(0,6v) +/O |oc1]6:] ds
¢
+ C/O 10150t 2p/ (p—2)10¢| ds + C”gH%{l(O,t;L%F))'
Owing to the Ladyzhenskaya interpolation inequality (see [28, Chapter II, (3.1)])
(243) Jocla < 2|02 0c) 2,
the continuous embedding V — L?/(P=2)(Q) and (242)-(243) we infer that
_ 1
(244) s M0l ooy + 10

t t
et clblagy + | Nedledledds+c [ 16l led ol ds
0 0

e+ cll0lZ20.0vy + 1ot Lo 0.6 10t 22 0,6 10 20,1

+ |0l Lo (0,:20 ) lotll 2 0,6:v) 10 | L2 (0,1 11 -

Lemma 6.11. In the two-space dimension case and when p > 2 we have
+1
(245) 101720,y + 10175 0. 0:2043 2y + N0llT e 0, + el 20,050y <

Proof. We test (25) by Ap;, then integrate with respect to time and use
relations (31), (143), and (149) to obtain

1
(246) [lotll72(0.1v) + §|A0(t)|2
t t
Scto / 1P () el ds + ¢ / 16allllo:]l ds
0 0
t t t
<cto / Vollleel s + / el ds + ¢ / 18151V 0120/ (r— ¢ s
0 0 0

t t
e / loll2 IVl 0] ds + / loll2 011 2] s
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t t t
<ce [ Nellledids +e [ ledds e [ 6l,IVel i ds
0 0 0

t
e / loll2 ) (196] + 16]) | 02] ds

Sc+ CTl/QHQ”L‘”(O,t;V) HQth(o,t;v) + CT1/2||Qt||L2(O,t;V)
+ |0l Lo 0,620 ) el 20, 5w 0t | 22 0,6

+ellelli @ 10llz20.6v) leell2o.6v)

1
<c+ §||Qt||2L2(o,t;V) + 017H9”2L2(0’t‘v)'

Now, we test (24) by 6 and use the Ladyzhenskaya interpolation inequality to infer
that

C d 1 1
@11) s SO S1013 < cllay o Ol + Ol + el
< clON0]ploc] + clOlploelllocll + cll k15 -

Then, integration of this inequality with respect to ¢ gives

C 1 1
@) O + 510y

< |0l o (o,6:20 @) 1012 0,6:v) [l 0t 2 0,15 )
+cllfllLoo,6:Lr ) lltl 20,60y 1ot | L2 0,61

2
+ c|lkll72(0,6v1)-
The remaining part of this proof is essentially the same as that of the previous lemma

for (237) and, hence, we can omit the details. O

Finally, (154) follows from (244), Lemma 6.4, and Lemma 6.11.

Since all the above a priori estimates are independent of the time ¢, we deduce
that our solution, furnished by Theorem 4.1, can be extended beyond ¢t = T', which
gives the global existence stated in Theorem 3.1.

7. CONTINUOUS DEPENDENCE

This section is devoted to the proof of uniqueness in Theorem 3.1. More precisely,
we prove the following continuous dependence result.
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Lemma 7.1. Let (C1)—(C2) hold and let F' be as in (H4)—(H5). Let us be given
pairs of data 0;, 0o; and g;, i = 1,2, satisfying (H1)—(H3) and (H6). Denote by
(0i,0i), © = 1,2, two corresponding solutions to system (24)—(30). Then for each
T > 0 there is a constant ¢(T') which is allowed to depend on T' and on the data
in (H1)-(H6), of course with i = 1,2, such that

(249) [|2(01) — ‘I>(92)H%x(o,T;V') + [lo1e — QQtH%?(O,T;H) + o1 — Q2||2Loo(o,T;V)
+ /01 — 92||2L2(0,T;H)
< e(TH{(12(001) = 2(Bo2) [V + k1 — ka2l 220,750 + lloo1 — eo2l|*}-

Proof. Weset § =601 —0s, u=®(0;)—P(02), 0= 01— 02 and k = k1 — ka. We
start by considering the difference between the corresponding equations (25) and we
test the resulting formula by g;. Then, from (H4) and (31) we infer that

1d

S ollol® < elof? + erel + el o]

1
(250) 1 lod|* +
Next, we consider the difference between the corresponding equations (24) and we
test it by J~'u. Then, Holder’s inequality, the continuous embedding L%/ () = V!
and (122) imply

d
(251) &HUH%/’,J +en 0

N =

< lullve s{lodllore + o2els + clflloiels + 2] 0ls| o1l
+ c|02]6|0t| + [|K[|v,s}-

Multiplying (250) by o > 0, then adding together with (251) and using repeatedly
Young’s inequality yields

od 2 1d 2 C11 2

—— —— , —16

2 ol + 5 Sl + Ll

< colol? + ciralb]? + cal|ba|?[lol® + KT 5 + llol®|ore |

+ (o, 0:)lullfr s {1+ orel3 + lozel3 + (16211}

g
(2 Zlal+

Finally, using the regularity of 9;; given by (30), taking o < ¢11/(2¢17) and applying
Gronwall’s lemma, we have the assertion. ([

Thus, the proof of Theorem 3.1 is complete. (]

44



[1]
2]

3]

[4]
[5]
[6]
[7]
8]
[9]
[10]
[11]
[12]

[13]

[14]

[15]
[16]
[17]
18]

[19]

[20]

21]

[22]

References

R. A. Adams: Sobolev Spaces. Academic Press, New York, 1975.

R. A. Adams, J. Fournier: Cone conditions and properties of Sobolev spaces. J. Math.
Anal. Appl. 61 (1977), 713-734.

S. Agmon, A. Douglis, L. Nirenberg: Estimates near the boundary for solutions of elliptic
partial differential equations satisfying general boundary conditions I, II. Commun. Pure
Appl. Math. 12 (1959), 623-727; 17 (1964), 35-92.

H. W. Alt, I. Pawlow: A mathematical model of dynamics of non-isothermal phase
separation. Physica D 59 (1992), 389-416.

H. Attouch: Variational Convergence for Functions and Operators. Pitman, London,
1984.

C. Baiocchi: Sulle equazioni differenziali astratte lineari del primo e del secondo ordine
negli spazi di Hilbert. Ann. Mat. Pura Appl. 76 (1967), 233-304. (In Italian.)

V. Barbu: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noord-
hoff, Leyden, 1976.

D. Blanchard, G.A. Francfort: A few results on a class of degenerate parabolic equa-
tions. Ann. Sc. Norm. Sup. Pisa 18 (1991), 213-249.

D. Blanchard, O. Guibé: Existence of a solution for a nonlinear system in thermovis-
coelasticity. Adv. Differ. Equ. 5 (2000), 1221-1252.

D. Blanchard, H. Redwane: Renormalized solutions for a class of nonlinear evolution
problems. J. Math. Pures Appl. 77 (1998), 117-151.

G. Bonfanti, M. Frémond, F. Luterotti: Global solution to a nonlinear system for in-
versible phase changes. Adv. Math. Sci. Appl. 10 (2000), 1-24.

G. Bonfanti, M. Frémond, F. Luterotti: Local solutions to the full model of phase tran-
sitions with dissipation. Adv. Math. Sci. Appl. 11 (2001), 791-810.

G. Bonfanti, M. Frémond, F. Luterotti: Existence and uniqueness results to a phase
transition model based on microscopic accelerations and movements. Nonlinear Anal.,
Real World Appl. 5 (2004), 123-140.

G. Bonfanti, F. Luterotti: Global solution to a phase transition model with microscopic
movements and accelerations in one space dimension. Commun. Pure Appl. Anal. 5§
(2006), 763-777.

H. Brézis: Analyse fonctionnelle. Théorie et applications. Masson, Paris, 1983. (In
French.)

P. Colli: On some doubly nonlinear evolution equations in Banach spaces. Japan J. Ind.
Appl. Math. 9 (1992), 181-203.

P. Colli, M. Frémond, O. Klein: Global existence of a solution to phase field model for
supercooling. Nonlinear Anal., Real World Appl. 2 (2001), 523-539.

P. Colli, G. Gilardi, M. Grasselli: Well-posedness of the weak formulation for the
phase-field model with memory. Adv. Differ. Equ. 2 (1997), 487-508.

P. Colli, G. Gilardi, M. Grasselli, G. Schimperna: Global existence for the conserved
phase field model with memory and quadratic nonlinearity. Port. Math. (N.S.) 58 (2001),
159-170.

P. Colli, Ph. Laurencot: Existence and stabilization of solutions to the phase-field model
with memory. J. Integral Equations Appl. 10 (1998), 169-194.

P. Colli, F. Luterotti, G. Schimperna, U. Stefanelli: Global existence for a class of
generalized systems for irreversible phase changes. NoDEA, Nonlinear Differ. Equ. Appl.
9 (2002), 255-276.

A. Damlamian: Some results on the multi-phase Stefan problem. Commun. Partial Dif-
fer. Equations 2 (1977), 1017-1044.

45



23]
24]
[25]

[26]
[27]

28]

29]

30]
31)
32)
33]
34]

[35]

[36]
37]
[38]
[39]
[40]

[41]

A. Damlamian, N. Kenmochi: Evolution equations generated by subdifferentials in the
dual space of H'(Q). Discrete Contin. Dyn. Syst. 5 (1999), 269-278.

R. J. DiPerna, J.-L. Lions: On the Cauchy problem for Boltzmann equations: Global
existence and weak stability. Ann. Math. 130 (1989), 321-366.

R. J. DiPerna, J.-L. Lions: Ordinary differential equations, transport theory and Sobo-
lev spaces. Invent. Math. 98 (1989), 511-547.

M. Frémond: Non-Smooth Thermomechanics. Springer, Berlin, 2002.

M. Gurtin: Generalized Ginzburg-Landau and Cahn-Hilliard equations based on micro-
force balance. Physica D 92 (1996), 178-192.

0. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural’tseva: Linear and Quasi-linear Equa-
tions of Parabolic Type. Translation of Mathematical Monographs, 23. AMS, Provi-
dence, 1968.

Ph. Laurengot, G. Schimperna, U. Stefanelli: Global existence of a strong solution to
the one-dimensional full model for irreversible phase transitions. J. Math. Anal. Appl.
271 (2002), 426-442.

J.-L. Lions: Quelques méthodes de résolution des problemes aux limites non linéaires.
Dunod/Gauthier-Villars, Paris, 1969. (In French.)

J.-L. Lions, E. Magenes: Problemes aux limites non homogenes et applications. Dunod,
Paris, 1968. (In French.)

F. Luterotti, U. Stefanelli: Existence result for the one-dimensional full model of phase
transitions. Z. Anal. Anwend. 21 (2002), 335-350.

F. Luterotti, G. Schimperna, U. Stefanelli: Existence result for a nonlinear model related
to irreversible phase changes. Math. Models Methods Appl. Sci. 11 (2001), 808-825.
F. Luterotti, G. Schimperna, U. Stefanelli: Global solution to a phase field model with
irreversible and constrained phase evolution. Q. Appl. Math. 60 (2002), 301-316.

F. Luterotti, G. Schimperna, U. Stefanelli: Local solution to Frémond’s full model for
irreversible phase transitions. In: Mathematical Models and Methods for Smart Mate-
rials. Proc. Conf., Cortona, Italy, June 2529, 2001 (M. Fabrizio, B. Lazzari, A. Mauro,
eds.). World Scientific, River Edge, 2002, pp. 323-328.

A. Miranville, G. Schimperna: Nonisothermal phase separation based on a microforce
balance. Discrete Contin. Dyn. Syst., Ser. B 5 (2005), 753-768.

A. Miranville, G. Schimperna: Global solution to a phase transition model based on a
microforce balance. J. Evol. Equ. 5 (2005), 253-276.

L. Nirenberg: On elliptic partial differential equations. Ann. Sc. Norm. Sup. Pisa, III. Ser.
1258 (1959), 115-162.

J. E. Rakotoson, J. M. Rakotoson: Analyse fonctionnelle appliquée aux équations aux
dérivées partielles. Presse Universitaires de France, 1999. (In French.)

J. Simon: Compact sets in the space LP(0,T; B). Ann. Mat. Pura Appl., IV. Ser. 146
(1978), 65-96.

R. Temam: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Sprin-
ger, New York, 1988.

Author’s address: N. Fterich, Laboratoire de Mathématiques et Applications, UMR

CNRS 6086, Université de Poitiers-SP2MI, Boulevard Marie et Pierre Curie, F-86962 Chas-
seneuil Futuroscope Cedex, France, e-mail: nesrine_ft@hotmail.fr.

46



		webmaster@dml.cz
	2020-07-02T12:44:33+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




