[1] Alvarez, C., Conca, C., Friz, L., Kavian, O., Ortega, J. H.:
Identification of immersed obstacles via boundary measurements. Inverse Probl. 21 (2005), 1531-1552.
MR 2173409 |
Zbl 1088.35080
[2] Azari, H., Allegretto, W., Lin, Y., Zhang, S.:
Numerical procedures for recovering a time dependent coefficient in a parabolic differential equation. Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 11 (2004), 181-199.
MR 2049776 |
Zbl 1055.35132
[3] Azari, H., Li, Ch., Nie, Y., Zhang, S.:
Determination of an unknown coefficient in a parabolic inverse problem. Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 11 (2004), 665-674.
MR 2077110 |
Zbl 1059.35161
[4] Azari, H., Zhang, S.:
Identifying a time dependent unknown coefficient in a parabolic inverse problem. Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms. Suppl. 12b (2005), 32-43.
MR 2269155
[8] J. Douglas, Jr., B. F. Jones, Jr.:
The determination of a coefficient in a parabolic differential equation. II. Numerical approximation. J. Math. Mech. 11 (1962), 919-926.
MR 0153988 |
Zbl 0112.32603
[9] B. F. Jones, Jr.:
The determination of a coefficient in a parabolic differential equation. I. Existence and uniqueness. J. Math. Mech. 11 (1962), 907-918.
MR 0153987 |
Zbl 0112.32602
[10] Keung, Y. L., Zou, J.:
Numerical identification of parameters in parabolic systems. Inverse Probl. 14 (1998), 83-100.
MR 1607632 |
Zbl 0894.35127
[11] Khachfe, R. A., Jarny, Y.:
Numerical solution of 2-D nonlinear inverse heat conduction problems using finite-element techniques. Numer. Heat Transfer, Part B: Fundamentals 37 (2000), 45-67.
DOI 10.1080/104077900275549
[12] Lin, Q., Yan, N.: The Construction and Analysis of High Efficiency Finite Element Methods. Hebei University Publishers Baoding (1996), Chinese.
[13] Lin, Q., Zhu, Q.: The Preprocessing and Postprocessing for the Finite Element Method. Shanghai Scientific & Technical Publishers Shanghai (1994), Chinese.
[14] Prilepko, A. I., Orlovskii, D. G.:
Determination of the parameter of an evolution equation and inverse problems of mathematical physics I. Differ. Equations 21 (1985), 96-104.
MR 0777788
[16] Ramm, A. G.:
A non-overdetermined inverse problem of finding the potential from the spectral function. Int. J. Differ. Equ. Appl. 3 (2001), 15-29.
MR 1852465 |
Zbl 1048.35137
[17] Ramm, A. G.:
Inverse problems for parabolic equations applications. Aust. J. Math. Anal. Appl. 2 (2005), Art. 10 (electronic).
MR 2174516 |
Zbl 1162.35384