[4] Bates, P. W., Zheng, S.:
Inertial manifolds and inertial sets for phase-field equations. J. Dyn. Diff. Equations 4 (1992), 375-398.
DOI 10.1007/BF01049391
[8] Cherfils, L., Miranville, A.:
Some results on the asymptotic behavior of the Caginalp system with singular potentials. Adv. Math. Sci. Appl. 17 (2007), 107-129.
MR 2337372 |
Zbl 1145.35042
[9] Chill, R., Fašangová, E., Prüss, J.:
Convergence to steady states of solutions of the Cahn-Hilliard and Caginalp equations with dynamic boundary conditions. Math. Nachr. 279 (2006), 1448-1462.
DOI 10.1002/mana.200410431 |
MR 2269249 |
Zbl 1107.35058
[10] Fischer, H. P., Maass, P., Dieterich, W.:
Novel surface modes in spinodal decomposition. Phys. Rev. Letters 79 (1997), 893-896.
DOI 10.1103/PhysRevLett.79.893
[11] Fischer, H. P., Maass, P., Dieterich, W.:
Diverging time and length scales of spinodal decomposition modes in thin flows. Europhys. Letters 62 (1998), 49-54.
DOI 10.1209/epl/i1998-00550-y
[14] Gatti, S., Miranville, A.:
Asymptotic behavior of a phase-field system with dynamic boundary conditions. Differential Equations: Inverse and Direct Problems (Proceedings of the workshop "Evolution Equations: Inverse and Direct Problems", Cortona, June 21-25, 2004). A series of Lecture Notes in Pure and Applied Mathematics, Vol. 251 A. Favini and A. Lorenzi CRC Press Boca Raton (2006), 149-170.
MR 2275977 |
Zbl 1123.35310
[16] Grasselli, M., Miranville, A., Pata, V., Zelik, S.:
Well-posedness and long time behavior of a parabolic-hyperbolic phase-field system with singular potentials. Math. Nachr. 280 (2007), 1475-1509.
DOI 10.1002/mana.200510560 |
MR 2354975 |
Zbl 1133.35017
[21] Kenzler, R., Eurich, F., Maass, P., Rinn, B., Schropp, J., Bohl, E., Dieterich, W.:
Phase separation in confined geometries: Solving the Cahn-Hilliard equation with generic boundary conditions. Comput. Phys. Comm. 133 (2001), 139-157.
DOI 10.1016/S0010-4655(00)00159-4 |
MR 1809807 |
Zbl 0985.65114
[22] Łojasiewicz, S.: Ensembles semi-analytiques. IHES Bures-sur-Yvette (1965), French.
[24] Miranville, A., Zelik, S.:
Robust exponential attractors for singularly perturbed phase-field type equations. Electron. J. Differ. Equ. (2002), 1-28.
MR 1911930 |
Zbl 1004.35024
[27] Prüss, J., Wilke, M.:
Maximal $L_p$-regularity and long-time behaviour of the non-isothermal Cahn-Hilliard equation with dynamic boundary conditions. Operator Theory: Advances and Applications, Vol. 168 Birkhäuser Basel (2006), 209-236.
MR 2240062 |
Zbl 1109.35060
[28] Racke, R., Zheng, S.:
The Cahn-Hilliard equation with dynamic boundary conditions. Adv. Diff. Equ. 8 (2003), 83-110.
MR 1946559 |
Zbl 1035.35050
[30] Simon, L.:
Asymptotics for a class of non-linear evolution equations, with applications to gemetric problems. Ann. Math. 118 (1983), 525-571.
DOI 10.2307/2006981 |
MR 0727703
[31] Temam, R.:
Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition. Springer New York (1997).
MR 1441312