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Abstract. This article is devoted to the study of the Caginalp phase field system with
dynamic boundary conditions and singular potentials. We first show that, for initial data
in H

2, the solutions are strictly separated from the singularities of the potential. This turns
out to be our main argument in the proof of the existence and uniqueness of solutions. We
then prove the existence of global attractors. In the last part of the article, we adapt well-
known results concerning the  Lojasiewicz inequality in order to prove the convergence of
solutions to steady states.

Keywords: Caginalp phase field system, singular potential, dynamic boundary conditions,
global existence, global attractor,  Lojasiewicz-Simon inequality, convergence to a steady
state

MSC 2010 : 35B40, 35B41, 80A22

1. Introduction

We consider in this article the following system of partial differential equations in

a bounded smooth domain Ω of R3:
{

ε ∂tw − ∆w = −∂tu,

∂tu− ∆u+ f(u) = w,

0 < ε < 1. This system of equations was proposed by G. Caginalp in [7] in order

to model melting-solidification phenomena in certain classes of materials. Here,

w corresponds to the relative temperature and u is the order parameter, or phase

field, which describes the proportion of either of the phases; the values u = ±1

correspond to the pure states.

This system, with various types of boundary conditions and for a regular poten-

tial f , has been extensively studied, see, e.g., [2], [3], [4], [5], [6], [7], [9], [14], [15],
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[24], [33] and the references therein. In particular, one has satisfactory results on the

existence and uniqueness of solutions, the existence of finite dimensional attractors

and the convergence of solutions to steady states. However, we note that for regular

potentials it is not known whether the order parameter remains in the physically

relevant interval [−1, 1] in general (see however [2] and [3]).

Now, singular potentials f are also important from the physical point of view; in

particular, we have in mind the following thermodynamically relevant logarithmic

potential:

f(s) = −κ0s+ κ1 ln
1 + s

1 − s
, s ∈ (−1, 1), 0 < κ0 < κ1.

Such potentials, in the case of Dirichlet boundary conditions for both w and u, were

considered in [16]; in particular, the existence and uniqueness of solutions and the

existence of exponential attractors were proved in [16]. The convergence of solutions

to steady states was proved in [17] for mixed Dirichlet (for the temperature) and

Neumann (for the order parameter) boundary conditions. The case of Neumann

boundary conditions, for both w and u, was treated in [8]. We can note that,

contrary to regular potentials, such singular potentials allow to prove that the order

parameter remains strictly between −1 and 1, as is expected from the physical point

of view.

In this article, we supplement the equations with the so-called dynamic boundary

conditions (in the sense that the kinetics, i.e., the time derivative of the order param-

eter, appears explicitly in the boundary conditions). Such boundary conditions have

been proposed by physicists (see [10], [11] and [21]; see also [12]) in order to account

for the wall effects in confined systems. In particular, the Cahn-Hilliard equation,

endowed with these boundary conditions, has been studied in [9], [12], [25], [26], [27],

[28] and [32]. The Caginalp system, endowed with dynamic boundary conditions and

with regular potentials, was considered in [9], [13] and [14].

Here we are interested in the Caginalp system endowed with dynamic boundary

conditions and with a singular potential f (and, in particular, with the above log-

arithmic potential). We prove the existence and uniqueness of solutions, as well as

their regularity. The main ingredient in this study consists in proving that the order

parameter u is strictly separated from the singular values of the potential.

We then prove the existence of global attractors. Recall that the global attractor A

associated with the semigroup S(t) on the phase space Φ is the smallest (with respect

to inclusion) compact and invariant set which attracts all bounded sets of initial data

as time goes to infinity; it thus appears as a suitable object in view of the study of

the asymptotic behavior of the system, see, e.g., [31] for a review on this subject.

Another important issue is whether any trajectory converges to some steady state

as time goes to infinity. It is important to note that such a question is not a trivial
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one, as there may be a continuum of steady states. In particular, following [9],

we are able to prove the convergence of trajectories to steady states by using an

approach based on the so-called  Lojasiewicz-Simon inequality and the analyticity

of the nonlinear terms. Such an approach, first considered in [30] (based on deep

results from the theory of analytic functions of several variables due to S.  Lojasiewicz,

see [22]) and then simplified and further developed in [20], has been applied with

success to many equations and, in particular, to models in phase separation and

transition, see, e.g., [1], [8], [17], [18], [19], [23], [27], [29] and [33].

2. Setting of the problem

In this article, we are interested in the study of the following phase-field system:

(1)











































ε∂tw − ∆w = −∂tu, t > 0, x ∈ Ω,

∂tu− ∆u+ f(u) = w, t > 0, x ∈ Ω,

∂tu− ∆Γu+ λu+
∂u

∂n
+ g(u) = 0, t > 0, x ∈ Γ = ∂Ω,

∂w

∂n

∣

∣

∣

Γ
= 0,

w|t=0 = w0, u|t=0 = u0,

where Ω is a bounded domain in R
3 with smooth boundary Γ, ∆Γ is the Laplace-

Beltrami operator and ∂/∂n is the outward normal derivative. We further assume

that 0 < ε < 1 and λ > 0 (actually, the condition λ > 0 is necessary only in order

to prove the existence of global attractors; for all the other results, we can also take

λ = 0).

The existence and uniqueness of solutions to problem (1) have already been proved

in [14] for regular potentials. We are concerned here with singular potentials, namely,

we assume that the function f satisfies the following conditions:

(H1) f ∈ C3(−1, 1), lim
s→±1

f(s) = ±∞, lim
s→±1

f ′(s) = +∞,

whereas the function g satisfies

(H2,a) g ∈ C3(R), lim inf
s→±∞

g′(s) > 0, g(s)s > µ|s|2 − µ′ ∀ s ∈ R,

for some µ > 0 and µ′ > 0, and there exists 0 < γ < 1 such that

(H2,b)

{

g(s) > 0 on [γ, 1],

g(s) 6 0 on [−1,−γ].
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In view of (H1), the function f has the following properties (see [16]):

(2) f ′(s) > −K1 and − c̃ 6 F (s) 6 f(s)s+ C̃ ∀ s ∈ (−1, 1),

where F (s) =
∫ s

0
f(r) dr and K1, c̃, C̃ are strictly positive constants. Moreover,

according to (H2,a), the following inequalities hold for g (see [14]):

(3) g′(s) > −K2 ∀ s ∈ R, (G(v) − g(v)v, 1)Γ 6 K2‖v‖
2
Γ ∀ v ∈ L2(Γ), K2 > 0,

where G(s) =
∫ s

0
g(r) dr.

In this article we denote by ‖ · ‖ and (·, ·) (or ‖ · ‖Γ and (·, ·)Γ) the norm and the

scalar product in L2(Ω) (in L2(Γ)). Furthermore, the singularities of the potential f

lead us to define the quantity D[u(t)] = (1−‖u(t)‖L∞)−1 for u ∈ L∞(Ω) and we set

〈u〉 = |Ω|−1
∫

Ω
u(x) dx for u ∈ L1(Ω).

Throughout the article, c, Cε will denote positive constants which may vary from

line to line and Q, Qε will denote increasing functions, Cε, Qε depending on ε.

3. A priori estimates

Following [14], [25], we introduce a further variable ψ = u|Γ and view the dynamic

boundary condition as a parabolic equation for ψ on the boundary, namely,

(4)











































ε∂tw − ∆w = −∂tu, t > 0, x ∈ Ω,

∂tu− ∆u+ f(u) = w, t > 0, x ∈ Ω,

∂tψ − ∆Γψ + λψ +
∂u

∂n
+ g(ψ) = 0, t > 0, x ∈ ∂Ω,

∂w

∂n

∣

∣

∣

Γ
= 0, u|Γ = ψ,

w|t=0 = w0, u|t=0 = u0, ψ|t=0 = ψ0.

We start with the following theorem. Note that all estimates already depend on ε.

Theorem 3.1. We assume that the functions f and g satisfy assumptions (H1),

(H2) and that the initial data (u0, ψ0, w0) satisfies

(5) D[u0] + ‖u0‖
2
H2 + ‖ψ0‖

2
H2(Γ) + ‖w0‖

2
H2 < +∞, D[u0] > 0, u0|Γ = ψ0.

Then, for every solution (u(t), ψ(t), w(t)) of (4) and every t > 0, we have

‖w(t)‖2
H2 + ‖u(t)‖2

H1 + ‖ψ(t)‖2
H1(Γ)(6)

+

∫ t

0

e−α(t−s)(‖∂tu(s)‖
2
H1 + ‖∂tψ(s)‖2

H1(Γ) + ε‖∂tw(s)‖2
H1 ) ds

+ ‖∂tu(t)‖
2 + ‖∂tψ(t)‖2

Γ

6 Qε(D[u0] + ‖w0‖
2
H2 + ‖u0‖

2
H2 + ‖ψ0‖

2
H2(Γ))e

−αt + Cε,I0 ,
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where I0 = 〈εw0 + u0〉 and the positive constant α and the increasing function Qε

are independent of (u0, ψ0, w0).

In order to prove Theorem 3.1, we need the following lemma.

Lemma 3.1. Under the assumptions of Theorem 3.1, any solution (u(t), ψ(t),

w(t)) to (4) satisfies, for every t > 0:

∫ t

0

(‖∂tu(s)‖
2 + ‖∂tψ(s)‖2

Γ + ‖∇w(s)‖2)e−α(t−s) ds(7)

+ ε‖w(t)‖2 + ‖u(t)‖2
H1 + ‖ψ(t)‖2

H1(Γ)

6 Q(D[u0] + ‖u0‖
2
H1 + ‖ψ0‖

2
H1(Γ) + ‖w0‖

2
L2)e−αt + Cε,I0 , α > 0.

P r o o f. According to (H1), we assume that, a priori,

(8) ‖u‖L∞(Ω̄×R+) < 1.

Integrating the first equation of (4) over Ω, we obtain the conservation law

〈εw(t) + u(t)〉 = 〈εw0 + u0〉 =: I0 ∀ t > 0.

We multiply the first equation of (4) by w, the second by u+ ∂tu, sum and integrate

over Ω. Using, e.g., the straightforward simplifications (in view of (4), third equation)

−(∆u(t), u(t)) = ‖∇u(t)‖2 −

∫

Γ

∂u

∂n
(t)u(t) dσ

= ‖∇u(t)‖2 +
1

2

d

dt
‖ψ(t)‖2

Γ + ‖∇Γψ(t)‖2
Γ

+ λ‖ψ(t)‖2
Γ + (g(ψ(t)), ψ(t))Γ

and

−(∆u(t), ∂tu(t)) = (∇u(t),∇∂tu(t)) −

∫

Γ

∂u

∂n
(t)∂tu(t) dσ

=
1

2

d

dt
‖∇u(t)‖2 + ‖∂tψ(t)‖2

Γ +
1

2

d

dt
‖∇Γψ(t)‖2

Γ

+
λ

2

d

dt
‖ψ(t)‖2

Γ +
d

dt
(G(ψ(t)), 1)Γ,

we obtain

1

2

d

dt
E(t) + ‖∇w(t)‖2 + ‖∇u(t)‖2 + ‖∇Γψ(t)‖2

Γ + λ‖ψ(t)‖2
Γ + (f(u(t)), u(t))(9)

+ (g(ψ(t)), ψ(t))Γ + ‖∂tu(t)‖
2 + ‖∂tψ(t)‖2

Γ = (w(t), u(t))
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with

E(t) = ε‖w(t)‖2 + ‖u(t)‖2 + ‖∇u(t)‖2 + 2(F (u(t)), 1) + (λ+ 1)‖ψ(t)‖2
Γ

+ ‖∇Γψ(t)‖2
Γ + 2(G(ψ(t)), 1)Γ.

Furthermore, employing Friedrich’s inequality

1

2
‖∇w(t)‖2

> CΩ(‖w(t)‖2 − |Ω|〈w(t)〉2), CΩ > 0,

together with (2), (3) and the following consequence of the conservation law:

〈u(t)〉 6 1, |〈w(t)〉| 6
|I0| + 1

ε
,

we deduce that, for α > 0 small enough,

d

dt
E(t) + αE(t) + ‖∇w(t)‖2 + ‖∂tu(t)‖

2 + ‖∂tψ(t)‖2
Γ 6 Cε,I0 .

Thus, applying Gronwall’s lemma, we finally obtain (7) and Lemma 3.1 is proved.

�

P r o o f of Theorem 3.1. We differentiate the second and third equations of (4)

with respect to t to find

∂2
ttu− ∆∂tu+ f ′(u)∂tu = ∂tw, t > 0, x ∈ Ω,(10)

∂2
ttψ − ∆Γ∂tψ + λ∂tψ +

∂(∂tu)

∂n
+ g′(ψ)∂tψ = 0, t > 0, x ∈ Γ.(11)

Next, we multiply (10) by ∂tu and the first equation of (4) by ∂tw, sum and integrate

over Ω. After straightforward transformations involving (11) we obtain, for α > 0

small enough (smaller than the same constant appearing in Lemma 3.1),

d

dt
{‖∂tu(t)‖

2 + ‖∂tψ(t)‖2
Γ + ‖∇w(t)‖2} + α(‖∂tu(t)‖

2 + ‖∂tψ(t)‖2
Γ + ‖∇w(t)‖2)

+ ‖∇∂tu(t)‖
2 + ‖∇Γ∂tψ(t)‖Γ + ε‖∂tw(t)‖2

6 C(‖∂tu(t)‖
2 + ‖∂tψ(t)‖2

Γ + ‖∇w(t)‖2).

Then we apply Gronwall’s lemma together with (7) and the inequalities

‖∂tψ(0)‖2 6 Q(‖ψ0‖
2
H2(Γ) + ‖u0‖

2
H2),

‖∂tu(0)‖2 6 Q(D[u0] + ‖u0‖
2
H2 + ‖w0‖

2).
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This yields

‖∂tu(t)‖
2 + ‖∂tψ(t)‖2

Γ + ‖∇w(t)‖2(12)

+

∫ t

0

e−α(t−s){‖∇∂tu(s)‖
2 + ‖∇Γ∂tψ(s)‖2

Γ + ε‖∂tw(s)‖2} ds

6 Q(D[u0] + ‖ψ0‖
2
H2(Γ) + ‖u0‖

2
H2 + ‖w0‖

2
H1)e−αt + Cε,I0 .

Finally, we multiply the first equation of (4) by −∆∂tw − ∆w and integrate over Ω.

This implies, for α > 0 small enough,

d

dt
{‖∆w(t)‖2 + ε‖∇w(t)‖2} + α(‖∆w(t)‖2 + ε‖∇w(t)‖2) + ε‖∇∂tw(t)‖2

6 Cε(‖∂tu(t)‖
2 + ‖∇∂tu(t)‖

2 + ‖∇w(t)‖2).

Hence we complete the proof of Theorem 3.1 by employing (7), (12) and Gronwall’s

lemma. �

It remains to prove proper H2-estimates for u and ψ.

Theorem 3.2. Under the assumptions of Theorem 3.1, the solutions u(t) and

ψ(t) of problem (4) are strictly separated from the singularities ±1 of the function f ,

i.e., there exists a constant 0 < δ < 1 depending on D[u0], ‖u0‖H2 , ‖ψ0‖H2(Γ),

‖w0‖H2 and ε such that

(13) ‖ψ(t)‖L∞(Γ) 6 δ and ‖u(t)‖L∞ 6 δ ∀ t > 0.

P r o o f. From Theorem 3.1 we infer the existence of a constant β > 0 such that

‖w(t)‖L∞ 6 c‖w(t)‖H2 6 β ∀ t > 0.

Hence we denote by δ a strictly positive constant depending on D[u0], ‖u0‖H2 ,

‖ψ0‖H2(Γ), ‖w0‖H2 and ε, which satisfies (we know that such a constant exists,

owing to (H1) and (H2,b))

(14) ‖u0‖L∞(Ω̄) < δ < 1, g(δ) > 0 and f(δ) > β > ‖w(t)‖L∞ ∀ t > 0.

We then set v = u− δ, ϕ = ψ − δ and rewrite the second and third equations of (4)

as

∂tv − ∆v + f(u) − f(δ) = w − f(δ),(15)

∂tϕ− ∆Γϕ+ λϕ +
∂v

∂n
+ g(ψ) − g(δ) = −λδ − g(δ).
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We multiply the first equation of (15) by v+ = max(v, 0) and integrate over Ω.

Applying (2) and (14) (i.e., w(t, x) − f(δ) 6 0 ∀ t > 0, ∀x ∈ Ω), we arrive at

1

2

d

dt
‖v+(t)‖2 + ‖∇v+(t)‖2 −

∫

Γ

∂v(t)

∂n
v+(t) dσ 6 K1‖v+(t)‖2.

We find, noting that v|Γ = ϕ and owing to (3) and (H2) (thus, λδ + g(δ) > 0),

−

∫

Γ

∂v(t)

∂n
ϕ+(t) dσ >

1

2

d

dt
‖ϕ+(t)‖2

Γ + ‖∇Γϕ+(t)‖2
Γ + λ‖ϕ+(t)|2Γ −K2‖ϕ+(t)|2Γ.

Then we obtain

1

2

d

dt
{‖v+(t)‖2 + ‖ϕ+(t)‖2

Γ} + ‖∇v+(t)‖2 + ‖∇Γϕ+(t)‖2
Γ + λ‖ϕ+(t)‖2

Γ

6 K1‖v+(t)‖2 +K2‖ϕ+(t)‖2
Γ.

Thus Gronwall’s lemma leads to

‖v+(t)‖2 + ‖ϕ+(t)‖2
Γ 6 (‖v+(0)‖2 + ‖ϕ+(0)‖2

Γ)eKt

with K = 2 max(K1,K2). According to (14) we have

v+(0) = 0 = ϕ+(0).

Hence we obtain

v+(t) = 0 = ϕ+(t) ∀ t > 0,

i.e.,

v(t, x) 6 0 ∀ t > 0, for a.e. x ∈ Ω, ϕ(t, x) 6 0 ∀ t > 0, for a.e. x ∈ Γ.

We then conclude that

u(t, x) 6 δ ∀ t > 0, for a.e. x ∈ Ω, ψ(t, x) 6 δ ∀ t > 0, for a.e. x ∈ Γ.

It remains to prove that u(t, x) > −δ for all t > 0, for a.e. x ∈ Ω. In order to do

so, we can assume, owing to (H1), that the constant 0 < δ < 1 introduced in (14)

also satisfies

f(−δ) < −β 6 −‖w(t)‖L∞ ∀ t > 0.

Then we set v = u − δ′ with δ′ = −δ. We again consider equation (15), with δ

replaced by δ′, and multiply this equation by v− = min(0, v). We omit the rest of

the proof of Theorem 3.2, the arguments being exactly the same as above. �
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Corollary 3.1. Under the assumptions of Theorem 3.1 there exists a constant

Mδ > 0 depending on the constant δ = δ(D[u0], ‖u0‖H2 , ‖ψ0‖H2(Γ), ‖w0‖H2 , ε) ap-

pearing in Theorem 3.2 such that the following estimate holds:

‖u(t)‖H2 + ‖ψ(t)‖H2(Γ) 6 Mδ ∀ t > 0.

P r o o f. According to Theorems 3.1 and 3.2, we can rewrite the second and

third equations of (4) as







−∆u = h1, h1 = w − ∂tu− f(u),

−∆Γψ + λψ +
∂u

∂n
= h2, h2 = −∂tψ − g(ψ),

with ‖h1‖ 6 C1 and ‖h2‖L2(Γ) 6 C2, the constants C1 and C2 depending on δ.

Arguing then as in [25, Lemma A.1], we obtain the estimate of Corollary 3.1. �

Theorem 3.3.

(i) Under the assumptions of Theorem 3.1 there exists a constant M1 depending

on t1, δ, D[u0], ‖u0‖H2 , ‖ψ0‖H2(Γ), ‖w0‖H2 , ε such that the following estimate

holds for some t1 > 0:

(16) ‖u(t)‖H3 + ‖ψ(t)‖H3(Γ) + ‖w(t)‖H3 6 M1 ∀ t > t1.

(ii) Furthermore, if we assume that

D[u0] + ‖u0‖H3 + ‖ψ0‖H3(Γ) + ‖w0‖H3 < +∞,

then there exists a constant M2 depending on D[u0], ‖u0‖H3 , ‖ψ0‖H3(Γ),

‖w0‖H3 , δ, ε such that

(17) ‖u(t)‖H3 + ‖ψ(t)‖H3(Γ) + ‖w(t)‖H3 6 M2 ∀ t > 0.

P r o o f. We multiply equation (10) by ∂2
ttu, integrate over Ω and use (11) to

obtain

d

dt
{‖∇∂tu(t)‖

2 + ‖∇Γ∂tψ(t)‖2
Γ + λ‖∂tψ(t)‖2

Γ} + ‖∂2
ttu(t)‖

2 + ‖∂2
ttψ(t)‖2

Γ(18)

6 C(‖∂tu(t)‖
2 + ‖∂tw(t)‖2 + ‖∂tψ(t)‖2

Γ).
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Then we multiply this inequality by s and integrate over [0, t]. Standard integrations

by parts and Theorem 3.1 lead to

t‖∇∂tu(t)‖
2 + t‖∇Γ∂tψ(t)‖2

Γ + λt‖∂tψ(t)‖2
Γ(19)

+

∫ t

0

(s‖∂2
ttu(s)‖

2 + s‖∂2
ttψ(s)‖2

Γ) ds

6

∫ t

0

(‖∇∂tu(s)‖
2 + ‖∇Γ∂tψ(s)‖2

Γ + λ‖∂tψ(s)‖2
Γ) ds

+ Ct

∫ t

0

(‖∂tu(s)‖
2 + ‖∂tw(s)‖2 + ‖∂tψ(s)‖2

Γ) ds 6 Cεt+ C′

ε

where the above constants depend on D[u0], ‖u0‖H2 , ‖ψ0‖H2(Γ), ‖w0‖H2 , δ and ε.

In particular, we infer that

‖∇∂tu(t)‖
2 + ‖∇Γ∂tψ(t)‖2

Γ + λ‖∂tψ(t)‖2
Γ(20)

6 Cε +
C′

ε

t
6 Cε +

C′
ε

t1
=: C1 ∀ t > t1 > 0.

Next, we differentiate the first equation of (4) with respect to t, multiply the resulting

equation by t ∂2
ttw and integrate over Ω. We find

εt‖∂2
ttw(t)‖2 + t

d

dt
‖∇∂tw(t)‖2 6

t

ε
‖∂2

ttu(t)‖
2.

Then integration over (0, t), combined with integration by parts, (19) and Theo-

rem 3.1, implies

t‖∇∂tw(t)‖2 + ε

∫ t

0

s‖∂2
ttw(s)‖2 ds 6

∫ t

0

s

ε
‖∂2

ttu(s)‖
2 ds+

∫ t

0

‖∇∂tw(s)‖2 ds

6 C′′

ε t+ C′′′

ε .

From the second equation of (4), we infer, applying (20), that

‖∇(∆u(t))‖ 6 ‖∇w(t)‖ + ‖∇f(u(t))‖ + ‖∇∂tu(t)‖ 6 C2 ∀ t > t1.

Hence we conclude, in view of Corollary 3.1, that

(21) ‖u(t)‖H3 6 C3 ∀ t > t1,

with C3 depending on t1, D[u0], ‖u0‖H2 , ‖ψ0‖H2(Γ), ‖w0‖H2 , δ, ε. In a similar way

we can write

‖∇Γ(∆Γψ(t))‖Γ 6 ‖∇Γ∂tψ(t)‖Γ + λ‖∇Γψ(t)‖Γ +
∥

∥

∥
∇Γ

(∂u

∂n
(t)

)∥

∥

∥

Γ
+ ‖∇Γg(ψ(t))‖Γ
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with
∥

∥

∥
∇Γ

(∂u

∂n
(t)

)∥

∥

∥

Γ
6 C‖u(t)‖H3 .

Consequently, estimates (20), (21) and Corollary 3.1 imply

‖ψ(t)‖H3(Γ) 6 C4 ∀t > t1.

The same arguments hold for the H3-estimate of w and (16) is proved.

In order to prove (17), we now assume that u0, w0 belong to H3(Ω) and that

ψ0 belongs to H3(Γ). We again integrate (18) over (0, t) and use Theorem 3.1

together with

‖∇∂tu(0)‖ 6 ‖∇(∆u0)‖ + ‖f ′(u0)∇u0‖ + ‖∇w0‖

6 C(‖u0‖H3 + ‖w0‖H1),

‖∇Γ∂tψ(0)‖Γ 6 C′(‖ψ0‖H3(Γ) + ‖u0‖H2(Γ))

6 C′′(‖ψ0‖H3(Γ) + ‖u0‖H3).

Then it follows that

‖∇∂tu(t)‖
2 + ‖∇Γ∂tψ(t)‖2

Γ + λ‖∂tψ(t)‖2
Γ(22)

+

∫ t

0

(‖∂2
ttu(s)‖

2 + ‖∂2
ttψ(s)‖2

Γ) ds 6 C′′′

with C′′′ depending on D[u0], ‖u0‖H3 , ‖ψ0‖H3(Γ), ‖w0‖H2 and ε.

Next, we differentiate the first equation of (4) with respect to t and multiply the

resulting equation by ∂2
ttw and integrate over Ω. Then we find

ε‖∂2
ttw(t)‖2 +

d

dt
‖∇∂tw(t)‖2 6

1

ε
‖∂2

ttu(t)‖
2.

Integrating this estimate over (0, t) and using

‖∇∂tw(0)‖ 6
1

ε
(‖∇∆w0‖ + ‖∇∂tu(0)‖)

6 Cε(‖w0‖H3 + ‖u0‖H3),

we obtain, in view of (22),

‖∇∂tw(t)‖2 + ε

∫ t

0

‖∂2
ttw(s)‖2 ds 6 C̃,
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with C̃ depending on ‖ψ0‖H3(Γ), ‖u0‖H3 , ‖w0‖H3 , D[u0], ε. Writing

‖∇(∆u(t))‖ 6 ‖∇w(t)‖ + ‖f ′(u(t))∇u(t)‖ + ‖∇∂tu(t)‖

and applying (22), we conclude that

‖u(t)‖H3 6 M ∀ t > 0,

with M depending on D[u0], ‖u0‖H3 , ‖ψ0‖H3(Γ) and ‖w0‖H3 . Similar arguments

apply to the H3-estimates of ψ and w, which completes the proof of Theorem 3.3.

�

We conclude this section by giving three lemmas concerned with the difference

of two solutions to problem (4). They furnish the Lipschitz continuous dependence

of the solutions on the initial data at any fixed time. In particular, we infer from

Lemma 3.2 below the uniqueness of solutions to problem (4) (and (1)).

Lemma 3.2. Let functions f and g satisfy assumptions (H1) and (H2), respec-

tively. Let (u1, ψ1, w1), (u2, ψ2, w2) be two solutions to problem (4) with initial data

satisfying (5). Then the following estimate holds for t > 0:

‖w1(t) − w2(t)‖
2 + ‖u1(t) − u2(t)‖

2 + ‖ψ1(t) − ψ2(t)‖
2
Γ

6 C1e
C2t(‖w1(0) − w2(0)‖2 + ‖u1(0) − u2(0)‖2 + ‖ψ1(0) − ψ2(0)‖2

Γ),

where C1, C2 depend on ε, but are independent of the initial data.

The proof of this lemma is the same as the one of [8, Lemma 3.1] (see also [16]

and [25]) and we thus omit the details here.

Lemma 3.3. Let functions f and g satisfy assumptions (H1) and (H2), respec-

tively. Let (u1, ψ1, w1), (u2, ψ2, w2) be two solutions to problem (4) with initial data

satisfying (5). Then the following estimate holds for t > 0:

ε‖w1(t) − w2(t)‖
2 + ‖u1(t) − u2(t)‖

2
H1

+ ‖ψ1(t) − ψ2(t)‖
2
H1(Γ) + 〈ε(w1(t) − w2(t)) + u1(t) − u2(t)〉

2

6 C3e
C4t(ε‖w1(0) − w2(0)‖2 + ‖u1(0) − u2(0)‖2

H1 + ‖ψ1(0) − ψ2(0)‖2
H1(Γ)),

with C3, C4 depending on ‖wi0‖H2 , ‖ui0‖H2 , ‖ψi0‖H2(Γ), D[ui0], i = 1, 2, and ε.
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P r o o f. We set w = w1 −w2, u = u1 − u2 and ψ = ψ1 − ψ2. Thus (u, ψ,w) is a

solution to

(23)











































ε∂tw − ∆w = −∂tu,

∂tu− ∆u+ l(t)u = w,

∂tψ − ∆Γψ + λψ +
∂u

∂n
+ h(t)ψ = 0,

∂w

∂n

∣

∣

∣

Γ
= 0, u|Γ = ψ,

w|t=0 = w0, u|t=0 = u0, ψ|t=0 = ψ0,

where l(t) =
∫ 1

0 f
′(su1(t)+(1−s)u2(t)) ds and h(t) =

∫ 1

0 g
′(sψ1(t)+(1−s)ψ2(t)) ds.

We have the conservation law

〈εw(t) + u(t)〉 = 〈εw10 + u10〉 − 〈εw20 + u20〉 =: Ĩ0 ∀ t > 0.

Since f and g are of class C1 and u1, u2, ψ1, ψ2 are strictly separated from ±1, we

infer that

(24) ‖l(t)‖L∞ + ‖h(t)‖L∞(Γ) 6 C ∀ t > 0,

with C depending on ‖wi0‖H2 , ‖ui0‖H2 , ‖ψi0‖H2(Γ), D[ui0], i = 1, 2, and ε.

We now multiply the first equation of (23) by w, the second by ∂tu, sum and

integrate over Ω to find

1

2

d

dt
{ε‖w(t)‖2 + ‖∇u(t)‖2 + ‖∇Γψ(t)‖2

Γ + λ‖ψ(t)‖2
Γ} + ‖∇w(t)‖2

+
1

2
‖∂tu(t)‖

2 +
1

2
‖∂tψ(t)‖2

Γ

6 c′‖u(t)‖2 + c‖ψ(t)‖2
Γ.

Using again Friedrich’s inequality and the fact that

d

dt
(〈εw(t) + u(t)〉2) = 0 ∀ t > 0

we obtain

1

2

d

dt
{ε‖w(t)‖2 + ‖∇u(t)‖2 + ‖∇Γψ(t)‖2

Γ + λ‖ψ(t)‖2
Γ + 〈εw(t) + u(t)〉2}

+ ‖∇w(t)‖2 +
1

2
‖∂tu(t)‖

2 +
1

2
‖∂tψ(t)‖2

Γ

6 c‖ψ(t)‖2
Γ + c′′‖∇u(t)‖2 + c′′′〈u(t)〉2.
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Next, we write

〈u〉 = 〈εw + u〉 − 〈εw〉.

Thus we have

〈u〉2 6 2〈εw + u〉2 + 2ε2〈w〉2 6 2〈εw + u〉2 +
2ε

|Ω|
‖w‖2

and, finally, we find

1

2

d

dt
{ε‖w(t)‖2 + ‖∇u(t)‖2 + ‖∇Γψ(t)‖2

Γ + λ‖ψ(t)‖2
Γ + 〈εw(t) + u(t)〉2}

6 C(‖ψ(t)‖2
Γ + ‖∇u(t)‖2 + 〈εw(t) + u(t)〉2 + ε‖w(t)‖2)

6 C̃(ε‖w(t)‖2 + ‖∇u(t)‖2 + ‖∇Γψ(t)‖2
Γ + λ‖ψ(t)‖2

Γ

+ 〈εw(t) + u(t)〉2).

Then we deduce that

ε‖w(t)‖2 + ‖∇u(t)‖2 + ‖ψ(t)‖2
H1(Γ) + 〈εw(t) + u(t)〉2

6 C(ε‖w(0)‖2 + ‖u(0)‖2
H1 + ‖ψ(0)‖2

H1(Γ))e
C̃t.

Again, this estimate, together with the inequality 〈u〉2 6 2〈εw+ u〉2 + 2ε|Ω|−1‖w‖2,

obviously leads to

〈u(t)〉2 6 2C(ε‖w(0)‖2 + ‖u(0)‖2
H1 + ‖ψ(0)‖2

H1(Γ))e
C̃t.

Hence we obtain the H1-estimate of u and Lemma 3.3 is proved. �

We also have the following result.

Lemma 3.4. Let functions f and g satisfy assumptions (H1) and (H2), respec-

tively. Let (u1, ψ1, w1), (u2, ψ2, w2) be two solutions to problem (4), with initial data

satisfying (5). Then we have, for t > 0,

‖w1(t) − w2(t)‖
2
H1 + ‖u1(t) − u2(t)‖

2
H1 + ‖ψ1(t) − ψ2(t)‖

2
H1(Γ)

+ ‖∂tu1(t) − ∂tu2(t)‖
2 + ‖∂tψ1(t) − ∂tψ2(t)‖

2
Γ

6 C5e
C6t(‖w10 − w20‖

2
H1 + ‖u10 − u20‖

2
H2 + ‖ψ10 − ψ20‖

2
H2(Γ))

with C5, C6 depending on ‖wi0‖H2 , ‖ui0‖H2 , ‖ψi0‖H2(Γ), D[ui0], i = 1, 2, and ε.
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P r o o f. We differentiate the second and third equations of (23) with respect

to t to obtain

(25)















∂2
ttu− ∆∂tu+ lt(t)u + l(t)∂tu = ∂tw,

∂2
ttψ − ∆Γ∂tψ + λ∂tψ +

∂(∂tu)

∂n
+ ht(t)ψ + h(t)∂tψ = 0,

ut|Γ = ψt.

Obviously, it follows from Theorems 3.1 and 3.2 that, in addition to (24), we also

have

‖lt(t)‖ + ‖ht(t)‖Γ 6 C ∀ t > 0.

We multiply the first equation of (25) by ∂tu and the first equation of (23) by ∂tw,

sum and integrate over Ω. Then, using (H1) and (H2), it follows from the conditions

l(t) > −K1 and h(t) > −K2 ∀ t > 0

and straightforward simplifications that

1

2

d

dt
{‖∇w(t)‖2 + ‖∂tu(t)‖

2 + ‖∂tψ(t)‖2
Γ} + ‖∇∂tu(t)‖

2

+ ‖∇Γ∂tψ(t)‖2
Γ + λ‖∂tψ(t)‖2

Γ + ε‖∂tw(t)‖2

6 K1‖∂tu(t)‖
2 +K2‖∂tψ(t)‖2

Γ

− (lt(t)u(t), ∂tu(t)) − (ht(t)ψ(t), ∂tψ(t))Γ.

Since we have (cf. (24) and recall that H1(Ω) →֒ L6(Ω))

|(lt(t)u(t), ∂tu(t))| 6 ‖lt(t)‖‖u(t)∂tu(t)‖

6 c‖u(t)‖L4‖∂tu(t)‖L4

6 c′‖u(t)‖H1‖∂tu(t)‖H1

6
1

2
‖∂tu(t)‖

2
H1 + C‖u(t)‖2

H1 ,

and, similarly,

|(ht(t)ψ(t), ∂tψ(t))| 6
1

2
‖∂tψ(t)‖2

H1(Γ) + C′‖ψ(t)‖2
H1(Γ),

we obtain

1

2

d

dt
{‖∇w(t)‖2 + ‖∂tu(t)‖

2 + ‖∂tψ(t)‖2
Γ} +

1

2
‖∂tu(t)‖

2
H1

+
1

2
‖∂tψ(t)‖2

H1(Γ) + ε‖∂tw(t)‖2

6 (K1 + 1)‖∂tu(t)‖
2 + (K2 + 1)‖∂tψ(t)‖2

Γ + C‖u(t)‖2
H1

+ C′‖ψ(t)‖2
H1(Γ).
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Thus

d

dt
{‖∇w(t)‖2 + ‖∂tu(t)‖

2 + ‖∂tψ(t)‖2
Γ} + ‖∂tu(t)‖

2
H1

+ ‖∂tψ(t)‖2
H1(Γ) + 2ε‖∂tw(t)‖2

6 C′′(‖∇w(t)‖2 + ‖∂tu(t)‖
2 + ‖∂tψ(t)‖2

Γ)

+ C′′′(‖u(t)‖2
H1 + ‖ψ(t)‖2

H1(Γ)).

Since

‖∂tu(0)‖2 6 C(‖u0‖
2
H2 + ‖w0‖

2),

‖∂tψ(0)‖2
Γ 6 C′(‖ψ0‖

2
H2(Γ) + ‖u0‖

2
H2),

we conclude by Gronwall’s lemma and Lemma 3.3 that

‖∇w(t)‖2 + ‖∂tu(t)‖
2 + ‖∂tψ(t)‖2

Γ 6 C(‖w0‖
2
H1 + ‖u0‖

2
H2 + ‖ψ0‖

2
H2(Γ))e

C′′t

and Lemma 3.4 is proved. �

4. Existence and uniqueness of solutions

Theorem 4.1. Let the nonlinearities f and g satisfy assumptions (H1) and (H2).

Then, for any initial data (u0, ψ0, w0) ∈ H2(Ω) ×H2(Γ) ×H2
N (Ω) satisfying

D[u0] + ‖u0‖
2
H2 + ‖ψ0‖

2
H2(Γ) + ‖w0‖

2
H2 < +∞, D[u0] > 0, u0|Γ = ψ0,

problem (4) (or (1)) possesses a unique solution (u, ψ,w) which satisfies all the esti-

mates of the previous section. Here H2
N (Ω) = {w ∈ H2(Ω), ∂w/∂n|Γ = 0}.

P r o o f. The above a priori estimates lead us to introduce the approximate

function

fδ(s) =











s+ δ + f(−δ), s ∈ (−∞,−δ],

f(s), s ∈ [−δ, δ],

s+ f(δ) − δ, s ∈ [δ,+∞),

where the constant δ > 0 is the one appearing in Theorem 3.2 (δ depends on D[u0],

‖u0‖H2 , ‖ψ0‖H2(Γ), ‖w0‖H2 and ε). Increasing δ (0 < δ < 1) if necessary, we can

assume that

f(δ) > δ and f(−δ) 6 −δ.
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Then we consider the following regularized problem:

(26)











































ε∂tw − ∆w = −∂tu, t > 0, x ∈ Ω,

∂tu− ∆u + fδ(u) = w, t > 0, x ∈ Ω,

∂tψ − ∆Γψ + λψ +
∂u

∂n
+ g(ψ) = 0, t > 0, x ∈ Γ,

∂w

∂n

∣

∣

∣

Γ
= 0, u|Γ = ψ,

w|t=0 = w0, u|t=0 = u0, ψ|t=0 = ψ0.

We can check, without any difficulty, that the function fδ satisfies the following

assumption, required in [14]: there exist constants η1 > 0 and η2 > 0 such that

fδ(s)s > η1s
2 − η2 ∀ s ∈ R.

Thus, arguing as in [14], we infer the existence of a solution (uδ, ψδ, wδ) to prob-

lem (26) belonging to

Cw([0, T ], H2(Ω) ×H2(Γ) ×H2
N (Ω)) ∩ (W 1,2

p (ΩT ) ×W 1,2
p (ΓT ) ×W 1,2

p (ΩT ))

with p ∈ (3, 10/3). (Here we have set ΩT = [0, T ] × Ω and ΓT = [0, T ] × Γ, and

W 1,2
p (ΩT ) denotes the set of functions which, together with their first time derivative

and first and second space derivatives, belong to Lp(ΩT ).)

In order to make sure that this solution is suitable for problem (4), we show in

the next lemma that fδ satisfies (2).

Lemma 4.1. We set Fδ(r) =
∫ r

0 fδ(s) ds. The functions fδ and Fδ possess the

following properties:

f ′

δ(r) > −K1, r 6= ±δ, and − c̃ 6 Fδ(r) 6 fδ(r)r + C̃ ∀ r ∈ R,

where K1, c̃, C̃ are the strictly positive constants appearing in (2).

P r o o f. We only detail the case r ∈ ]δ,+∞). The other ones are very similar

and are omitted.

It follows from the definition of fδ that f ′
δ(r) = 1 > −K1 ∀ r ∈ ]δ,+∞). Moreover,

since f satisfies (2) and f(δ) > δ, we obtain

Fδ(r) =

∫ δ

0

fδ(s) ds+

∫ r

δ

fδ(s) ds = F (δ) +
r2 − δ2

2
+ (f(δ) − δ)(r − δ) > −c̃.
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Then, since f(δ) = fδ(r) − r + δ for r > δ, (2) also leads to

Fδ(r) = F (δ) + (r − δ)
(r − δ

2
+ f(δ)

)

6 f(δ)δ + C̃ + (r − δ)
(r − δ

2
+ f(δ)

)

6 f(δ)r + C̃ +
(r − δ)2

2

6 fδ(r)r + C̃ + (δ − r)
( r + δ

2

)

6 fδ(r)r + C̃.

As a consequence of Lemma (4.1), the a priori estimates established in Section 2 for

the solutions to problem (4) still hold for the solutions to (Pδ). In particular, we

deduce from Theorem 3.2 that

‖uδ(t)‖L∞ 6 δ ∀ t > 0.

Hence we have fδ(uδ) = f(uδ) and we conclude that (uδ, ψδ, wδ) is also a solution

to problem (4). Since the uniqueness of the solution to problem (4) is a direct

consequence of Lemma 3.3, we finally conclude that (uδ, ψδ, wδ) is the unique solution

to problem (4) and Theorem 4.1 is proved. �

R e m a r k 4.1. Actually, in order to apply the results of [14], the function fδ

needs to be of class C1. However, the existence of a solution for this less regular

function fδ follows from standard regularization arguments (in particular, we can

consider a regularized potential f ξ
δ (which approximates fδ) of class C1.

R e m a r k 4.2. Lemma 3.2 allows to prove (by continuity) the existence (and

also the uniqueness) of a solution for initial data belonging to the closure L of

Φ =
{

(u,w, ψ) ∈ H2(Ω) ×H2(Ω) ×H2(Γ), u|
Γ

= ψ,
∂w

∂n

∣

∣

∣

Γ
= 0, ‖u‖L∞ < 1

}

in L2(Ω) × L2(Ω) × L2(Γ), namely,

L = {(u,w, ψ) ∈ L∞(Ω) × L2(Ω) × L2(Γ), ‖u‖L∞ 6 1}

(see also [8], [16] and [25] where similar situations are encountered). This allows

in particular to consider initial data containing also the pure states (i.e., u0 can

take the values ±1). Now, contrary to the case of Dirichlet or Neumann boundary

conditions (see [8] and [16]), we have not been able to prove that the system mixes

instantaneously, i.e, that the solutions are separated from the singular values of the

potential as soon as t > 0 (or in finite time, i.e., for t > t0 > 0). The difficulties

here come from the dynamic boundary condition; essentially, we would need to prove

that, for a solution starting in L, ‖u(t0)‖L∞ < 1, where t0 > 0 is arbitrarily small.
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5. Existence of global attractors

Owing to the results of the previous section, we can define the semigroup

S(t) : ΦM → ΦM , S(t)(u0, w0, ψ0) = (u(t), w(t), ψ(t)),

where (u,w, ψ) is the unique solution to (1) with initial data (u0, w0, ψ0) and

ΦM =
{

(u,w, ψ) ∈ H2(Ω) ×H2(Ω) ×H2(Γ), u|Γ = ψ,
∂w

∂n

∣

∣

∣

Γ
= 0, ‖u‖L∞ < 1,

|I0| 6 M
}

.

Now, the estimate of Corollary 3.1 does not allow to prove the existence of a bounded

absorbing set (i.e., that the system is dissipative), since the constant δ is chosen

such that ‖u0‖L∞(Ω̄) < δ < 1, which implies that the constant Mδ depends on

‖u0‖L∞ and is not bounded as ‖u0‖L∞ → 1. Thus, in order to have a dissipative

estimate on ‖u‖L∞, we need to proceed in a more accurate way. To do so, we set

y+(t) = max(δ̃, 1 − αt), where 0 < δ̃ < 1 and α > 0 are to be fixed below. We thus

have, setting t0 = (1 − δ̃)/α,

y+(t) =

{

1 − αt if 0 6 t 6 t0,

δ̃ if t > t0.

Furthermore, setting v = u− y+ and ϕ = ψ − y+, we have

∂tv − ∆v + f(u) − f(δ̃) = w − f(δ̃),

∂tϕ− ∆Γϕ+ λϕ+ ∂v/∂n+ g(ψ) − g(δ̃) = −λδ̃ − g(δ̃)

for t > t0, and

∂tv − ∆v + f(u) − f(1 − αt) = w − f(1 − αt) + α,

∂tϕ− ∆Γϕ+ λϕ+ ∂v/∂n+ g(ψ) − g(1 − αt) = −λ(1 − αt) − g(1 − αt) + α

for t < t0. Proceeding then exactly as in the proof of Theorem 3.2 we now see that,

choosing δ̃ such that

g(δ̃) > 0, f(δ̃) > β > ‖w(t)‖L∞ ∀ t > 0

and taking then α small enough such that (owing to (H1) and (H2,b) and noting that

λ > 0)

λ(1 − αt) + g(1 − αt) − α > 0, ‖w(t)‖L∞ − f(1 − αt) + α 6 0

∀ t ∈ [0, t0], we have

u(t, x) 6 y+(t), x ∈ Ω, t > 0, t 6= t0,

ψ(t, x) 6 y+(t), x ∈ Γ, t > 0, t 6= t0.
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Similarly, setting y−(t) = min(−δ̃,−1+αt), we have (see the proof of Theorem 3.2)

u(t, x) > y−(t), x ∈ Ω, t > 0, t 6= t0,

ψ(t, x) > y−(t), x ∈ Γ, t > 0, t 6= t0.

We now deduce from the above estimates that

‖u(t)‖L∞ 6 δ̃ for t > t0.

Furthermore, it follows from Theorem 3.1 that, if R0 = R0(M) is large enough, then

for t > t1 = t1(R0) we have ‖w(t)‖H2 6 R0. Therefore, taking t > t0 > t1, t0 large

enough, we have, proceeding as above,

‖u(t)‖L∞ 6 δ̃,

where δ̃ = δ̃(R0) is now independent of the initial data.

We finally deduce from the estimates performed in Section 2 that, if R1 = R1(M)

is large enough, then

Bi
R1

= {(u,w, ψ) ∈ Hi(Ω) ×Hi(Ω) ×Hi(Γ), ‖u‖Hi + ‖w‖Hi + ‖ψ‖Hi 6 R1} ∩ ΦM

is a bounded absorbing set for S(t) on Hi(Ω)×Hi(Ω)×Hi(Γ), i = 2, 3. This yields

the following result (note that it is not difficult to prove that S(t) : ΦM → ΦM is

continuous ∀ t > 0).

Theorem 5.1. The semigroup S(t) possesses the compact global attractor AM

on ΦM which is bounded in H
3(Ω) ×H3(Ω) ×H3(Γ).

R e m a r k 5.1. It is now not difficult to prove, in view of the strict separation

property of u, that AM has finite dimension (in the sense of the Hausdorff or the

fractal dimension, see, e.g., [31]); to do so, we essentially proceed as in the case of

regular potentials (see, e.g., [8] and [14]).
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6. Convergence to an equilibrium

In addition to (H1), the function f will be assumed to satisfy

(H3) f is real analytic in (−1, 1).

The main result of this section is given in the following theorem.

Theorem 6.1. Let f satisfy assumptions (H1), (H3), g = 0 and let (u, u|Γ, w) be a

solution to (1) with initial data (u0, u0|Γ, w0) satisfying (5). Then lim
t→+∞

u(t) =: ū and

lim
t→+∞

w(t) =: w exist in H2(Ω)∩H2(Γ) andH2(Ω), respectively, and the functions ū,

w are solutions to the equilibrium problem

(27)















−∆ū+ f(ū) = w, x ∈ Ω,

−∆Γū+
∂ū

∂n
+ λū = 0, x ∈ Γ,

〈εw + ū〉 = I0 (= 〈εw0 + u0〉).

We will only outline the proof, which follows the arguments of R. Chill et al. [9]

(see also [27]). To this aim, we first make a change of unknowns in problem (1).

R e m a r k 6.1. We slightly change our notation in this section and set, follow-

ing [9], Hi(Ω) ∩Hi(Γ) = {u ∈ Hi(Ω), u|Γ ∈ Hi(Γ)}, endowed with the norm

‖u‖2
Hi(Ω)∩Hi(Γ) = ‖u‖2

Hi + ‖u‖2
Hi(Γ),

i = 0, 1, 2, being understood that, for i = 0, we assume that the trace exists.

6.1. Modified problem and the solving semigroup

We set v = w − I0/ε and f̃(u) = f(u) − I0/ε. Then we can rewrite problem (1)

(for g = 0) as

(28)











































ε∂tv − ∆v = −∂tu, t > 0, x ∈ Ω,

∂tu− ∆u+ f̃(u) = v, t > 0, x ∈ Ω,

∂tu− ∆Γu+ λu +
∂u

∂n
= 0, t > 0, x ∈ Γ,

∂v

∂n

∣

∣

∣

Γ
= 0,

v|t=0 = w0 −
I0
ε
, u|t=0 = u0.
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Here we consider a modified problem in order to have the homogeneous conservation

law

〈εv(t) + u(t)〉 = 0 ∀ t > 0

(see [9]). It is clear that the function f̃ also satisfies assumptions (H1) (and, conse-

quently, (2)) and (H3). Thus all the a priori estimates of the preceding sections still

hold for the solutions to problem (28).

We can now define the solving semigroup associated with problem (28), namely,

S(t) : Φ → Φ, S(t)(u0, v0) = (u(t), v(t)),

where (u, u|Γ, v) is the unique solution to problem (28) with initial data (u0, u0|Γ,

v0) and

Φ =
{

(u, v) ∈ (H2(Ω) ∩H2(Γ)) ×H2(Ω),
∂v

∂n

∣

∣

∣

Γ
= 0, ‖u‖L∞ < 1, 〈εv + u〉 = 0

}

,

endowed with the norm

‖(u, v)‖2
Φ = ‖u‖2

H2 + ‖u‖2
H2(Γ) + ‖v‖2

H2 .

Of course, S(t)(u0, w0 − I0/ε) = (u(t), v(t)), where (u, u|Γ, v + I0/ε) is the unique

solution to problem (4) with initial data (u0, u0|Γ, w0).

We then define a functional E : Φ → R as

E(u(t), v(t)) =
1

2
‖∇u(t)‖2 +

∫

Ω

F̃ (u(t)) dx+
1

2
‖∇Γu(t)‖

2
Γ +

λ

2
‖u(t)‖2

Γ +
ε

2
‖v(t)‖2,

where F̃ (s) =
∫ s

0 f̃(r) dr. This functional is a Lyapunov function for our problem,

since it satisfies

d

dt
E(u(t), v(t)) = (−∆u(t) + f̃(u(t)), ∂tu(t))(29)

+
(

−∆Γu(t) +
∂u(t)

∂n
+ λu(t), ∂tu(t))Γ + ε(v(t), ∂tv(t)

)

= − ‖∂tu(t)‖
2 − ‖∂tu(t)‖

2
Γ + (v(t), ∂tu(t) + ε∂tv(t))

= − ‖∂tu(t)‖
2 − ‖∂tu(t)‖

2
Γ − ‖∇v(t)‖2

6 0 ∀ t > 0.

Moreover, assume that there exists t̃ > 0 such that E(S(t̃)(u0, v0)) = E(u0, v0). Then

it follows that ∂tu(t) = 0, ∂tu|Γ(t) = 0, ∇v(t) = 0 ∀ t ∈ (0, t̃). Hence ∂tv(t) = 0 ∀ t ∈

(0, t̃) and (u0, u0|Γ, v0) is a stationary solution. Finally, we infer from (16) that the

orbit
⋃

t>t1

S(t)(u0, v0) is relatively compact in Φ. Thus (Φ, S(t), E) is a gradient
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system, from which it follows that the ω-limit set (with respect to the topology of Φ)

ω(u0, v0) consists of equilibria. Furthermore, the equilibria coincide with the critical

points of E. The proofs of these assertions resemble the ones given in [9], owing to

the strict separation property on u, and we thus omit the details. We now have to

prove that ω(u0, v0) is a singleton.

R e m a r k 6.2. It follows from the relative compactness and the existence of a

Lyapunov function that (27) possesses at least one solution, i.e., that there is at

least one stationary solution. Alternatively, proceeding as in [32], we can prove

that u ∈ H3(Ω), 〈u〉 = I0 − εw, ‖u‖L∞ 6 δ < 1, where the constants w and δ satisfy

I0 − εw 6 δ, is a solution to (27) if and only if it is a critical point of

J(u(t)) =
1

2
‖∇u(t)‖2 +

∫

Ω

F (u(t)) dx+
1

2
‖∇Γu(t)‖

2
Γ +

λ

2
‖u(t)‖2

Γ +
ε

2
‖w‖2

over

K = {u ∈ H1(Ω) ∩H1(Γ), 〈u〉 = I0 − εw}.

Then, noting that Kδ = {u ∈ K, ‖u‖L∞ 6 δ} (where w and δ are as above) is

weakly closed and that J is bounded from below on Kδ (note that f is actually

regular on Kδ), we can prove that J possesses a minimizer u in Kδ, hence the

existence of a solution to (27). We refer the reader to [32] for more details.

6.2. A  Lojasiewicz-Simon type inequality

We set

V = {(u, v) ∈ (H1(Ω) ∩H1(Γ)) × L2(Ω), 〈εw + u〉 = 0}.

We obviously have Φ →֒ V , hence V ′ →֒ Φ′.

The proof of Theorem 6.1 requires a  Lojasiewicz-Simon type inequality related

to E. Although the potential in (28) is singular, we can use a result proved in [9]

for regular potentials. Indeed, we saw in Theorem 3.2 that the solutions are regular

and strictly separated from the singularities ±1. Consequently, the nonlinearity f̃(u)

is bounded in L∞(Ω). Thus the arguments of [9] are still valid in our case (see in

particular [9, Proposition 6.6]; see also [27]), and we have

Proposition 6.1. Let (ū, v) ∈ Φ be a critical point of the functional E. Then

there exist constants σ > 0, C > 0 and θ̄ ∈ (0, 1
2 ] depending on (ū, v) such that

|E(u, v) − E(ū, v)|1−θ̄
6 C‖E′(u, v)‖V ′ ,

whenever ‖(u, v) − (ū, v)‖Φ 6 σ and ‖u‖L∞ 6 δ, δ < 1.
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Thus the functional E satisfies the  Lojasiewicz-Simon inequality near every

(ϕ, ψ) ∈ ω(u0, v0). Since the ω-limit set ω(u0, v0) is compact in Φ and E is con-

stant (= E∞) on ω(u0, v0), there exist uniform constants θ ∈ (0, 1
2 ], C > 0 and a

neighborhood U of ω(u0, v0) in Φ such that, for every (u, v) ∈ U ,

|E(u, v) − E∞|1−θ 6 C‖E′(u, v)‖V ′

(see [9] for more details). Furthermore, since lim
t→+∞

dist((u(t), v(t)), ω(u0, v0)) = 0

in Φ, there exists TL > 0 such that

(u(t), v(t)) ∈ U ∀ t > TL.

Let (u, v) belong to Φ. In order to estimate ‖E′(u, v)‖V ′ , we note that, for every

(h, k) ∈ V ,

〈E′(u, v), (h, k)〉V ′,V

= (∇u,∇h) + (f̃(u), h) + (∇Γu,∇Γh)Γ + λ(u, h)Γ + ε(v, k)

= (−∆u+ f̃(u) − v, h) +
(

−∆Γu+
∂u

∂n
+ λu, h

)

Γ
+

∫

Ω

(vh+ εvk) dx

= (−∆u+ f̃(u) − v, h) +
(

−∆Γu+
∂u

∂n
+ λu, h

)

Γ
+ (v − 〈v〉, h+ εk).

Thus (28) implies

‖E′(u, v)‖V ′ 6 ‖∆u− f̃(u) + v‖ + ‖∆Γu−
∂u

∂n
− λu‖Γ + C‖∇v‖

6 C(‖∂tu‖ + ‖∂tu‖Γ + ‖∇v‖).

6.3. Proof of Theorem 6.1

By definition of an ω-limit set, there exists (ū, v) ∈ ω(u0, v0) and a sequence

tn → +∞ such that

u(tn) → ū in H2(Ω) ∩H2(Γ) and v(tn) → v in H2(Ω).

If E(u(t̃), v(t̃)) = E(ū, v) (= E∞) for some t̃ > 0, then E(u(t), v(t)) = E(ū, v)

∀ t > t̃ and it follows from (29) that

u(t) = ū, v(t) = v ∀ t > t̃.

Hence Theorem 6.1 is proved in that case. So, we may assume that E(u(t), v(t)) >

E∞ ∀ t > 0.
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We note that

−
d

dt
(E(u(t), v(t)) − E∞)θ

= θ (E(u(t), v(t)) − E∞)θ−1(‖∂tu(t)‖
2 + ‖∂tu(t)‖

2
Γ + ‖∇v(t)‖2)

>
θ

4
(E(u(t), v(t)) − E∞)

θ−1
(‖∂tu(t)‖ + ‖∂tu(t)‖Γ + ‖∇v(t)‖)2.

Thus the above uniform  Lojasiewicz-Simon inequality implies, for t > TL,

−
d

dt
(E(u(t), v(t)) − E∞)θ

>
θ

4C
(‖∂tu(t)‖ + ‖∂tu(t)‖Γ + ‖∇v(t)‖).

By integrating this inequality over (TL,+∞), we infer that

∂tu ∈ L1(TL,+∞, L2(Ω) ∩ L2(Γ)), ∇v ∈ L1(TL,+∞, L2(Ω)).

Since

ε‖∂tv(t)‖H−1 6 ‖∆v(t)‖H−1 + ‖∂tu(t)‖H−1

6 C(‖∇v(t)‖ + ‖∂tu(t)‖),

we also deduce that ∂tv ∈ L1(TL,+∞, H−1(Ω)) and conclude that

lim
t→∞

(u(t), v(t)) = (ū, v)

exists in (L2(Ω) ∩ L2(Γ)) × H−1(Ω) and that (ū, v) is a solution to the stationary

problem associated with (28). By the relative compactness of the orbit, this limit

also exists in the space (H2(Ω) ∩H2(Γ)) ×H2(Ω). We finally conclude that

lim
t→∞

(u(t), w(t)) = (ū, w)

strongly in (H2(Ω) ∩H2(Γ)) ×H2(Ω), where (ū, w) is a solution to (27).

Acknowledgements. The authors wish to thank the referee for several useful

comments.

113



References

[1] H. Abels, M. Wilke: Convergence to equilibrium for the Cahn-Hilliard equation with a
logarithmic free energy. Nonlinear Anal. 67 (2007), 3176–3193.

[2] S. Aizicovici, E. Feireisl: Long-time stabilization of solutions to a phase-field model
with memory. J. Evol. Equ. 1 (2001), 69–84.

[3] S. Aizicovici, E. Feireisl, F. Issard-Roch: Long-time convergence of solutions to a
phase-field system. Math. Methods Appl. Sci. 24 (2001), 277–287.

[4] P. W. Bates, S. Zheng: Inertial manifolds and inertial sets for phase-field equations.
J. Dyn. Diff. Equations 4 (1992), 375–398.

[5] D. Brochet, X. Chen, D. Hilhorst: Finite dimensional exponential attractors for the
phase-field model. Appl. Anal. 49 (1993), 197–212.

[6] M. Brokate, J. Sprekels: Hysteresis and phase transitions. Springer, New York, 1996.
[7] G. Caginalp: An analysis of a phase field model of a free boundary. Arch. Ration. Mech.

Anal. 92 (1986), 205–245.
[8] L. Cherfils, A. Miranville: Some results on the asymptotic behavior of the Caginalp

system with singular potentials. Adv. Math. Sci. Appl. 17 (2007), 107–129.
[9] R. Chill, E. Fašangová, J. Prüss: Convergence to steady states of solutions of the

Cahn-Hilliard and Caginalp equations with dynamic boundary conditions. Math. Nachr.
279 (2006), 1448–1462.

[10] H. P. Fischer, P. Maass, W. Dieterich: Novel surface modes in spinodal decomposition.
Phys. Rev. Letters 79 (1997), 893–896.

[11] H. P. Fischer, P. Maass, W. Dieterich: Diverging time and length scales of spinodal
decomposition modes in thin flows. Europhys. Letters 62 (1998), 49–54.

[12] C. G. Gal: A Cahn-Hilliard model in bounded domains with permeable walls. Math.
Methods Appl. Sci. 29 (2006), 2009–2036.

[13] C. G. Gal, M. Grasselli: The non-isothermal Allen-Cahn equation with dynamic bound-
ary conditions. Discrete Contin. Dyn. Syst. 22 (2008), 1009–1040.

[14] S. Gatti, A. Miranville: Asymptotic behavior of a phase-field system with dynamic
boundary conditions. Differential Equations: Inverse and Direct Problems (Proceedings
of the workshop “Evolution Equations: Inverse and Direct Problems”, Cortona, June
21–25, 2004). A series of Lecture Notes in Pure and Applied Mathematics, Vol. 251
(A. Favini and A. Lorenzi, eds.). CRC Press, Boca Raton, 2006, pp. 149–170.

[15] C. Giorgi, M. Grasselli, V. Pata: Uniform attractors for a phase-field model with mem-
ory and quadratic nonlinearity. Indiana Univ. Math. J. 48 (1999), 1395–1445.

[16] M. Grasselli, A. Miranville, V. Pata, S. Zelik: Well-posedness and long time behavior
of a parabolic-hyperbolic phase-field system with singular potentials. Math. Nachr. 280

(2007), 1475–1509.
[17] M. Grasselli, H. Petzeltová, G. Schimperna: Long time behavior of solutions to the

Caginalp system with singular potential. Z. Anal. Anwend. 25 (2006), 51–72.
[18] M. Grasselli, H. Petzeltová, G. Schimperna: Convergence to stationary solutions for a

parabolic-hyperbolic phase-field system. Commun. Pure Appl. Anal. 5 (2006), 827–838.
[19] M. Grasselli, H. Petzeltová, G. Schimperna: A nonlocal phase-field system with inertial

term. Q. Appl. Math. 65 (2007), 451–46.
[20] M. A. Jendoubi: A simple unified approach to some convergence theorems of L. Simon.

J. Funct. Anal. 153 (1998), 187–202.
[21] R. Kenzler, F. Eurich, P. Maass, B. Rinn, J. Schropp, E. Bohl, W. Dieterich: Phase

separation in confined geometries: Solving the Cahn-Hilliard equation with generic
boundary conditions. Comput. Phys. Comm. 133 (2001), 139–157.

[22] S.  Lojasiewicz: Ensembles semi-analytiques. IHES, Bures-sur-Yvette, 1965. (In French.)

114



[23] A. Miranville, A. Rougirel: Local and asymptotic analysis of the flow generated by the
Cahn-Hilliard-Gurtin equations. Z. Angew. Math. Phys. 57 (2006), 244–268.

[24] A. Miranville, S. Zelik: Robust exponential attractors for singularly perturbed phase-
field type equations. Electron. J. Differ. Equ. (2002), 1–28.

[25] A. Miranville, S. Zelik: Exponential attractors for the Cahn-Hilliard equation with dy-
namic boundary conditions. Math. Methods Appl. Sci. 28 (2005), 709–735.

[26] J. Prüss, R. Racke, S. Zheng: Maximal regularity and asymptotic behavior of solutions
for the Cahn-Hilliard equation with dynamic boundary conditions. Ann. Mat. Pura
Appl. 185 (2006), 627–648.

[27] J. Prüss, M. Wilke: Maximal Lp-regularity and long-time behaviour of the non-iso-
thermal Cahn-Hilliard equation with dynamic boundary conditions. Operator Theory:
Advances and Applications, Vol. 168. Birkhäuser, Basel, 2006, pp. 209–236.

[28] R. Racke, S. Zheng: The Cahn-Hilliard equation with dynamic boundary conditions.
Adv. Diff. Equ. 8 (2003), 83–110.

[29] P. Rybka, K.-H. Hoffmann: Convergence of solutions to Cahn-Hilliard equation. Com-
mun. Partial Differ. Equations 24 (1999), 1055–1077.

[30] L. Simon: Asymptotics for a class of non-linear evolution equations, with applications
to gemetric problems. Ann. Math. 118 (1983), 525–571.

[31] R. Temam: Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edi-
tion. Springer, New York, 1997.

[32] H. Wu, S. Zheng: Convergence to equilibrium for the Cahn-Hilliard equation with dy-
namic boundary conditions. J. Differ. Equations 204 (2004), 511–531.

[33] Z. Zhang: Asymptotic behavior of solutions to the phase-field equations with Neumann
boundary conditions. Commun. Pure Appl. Anal. 4 (2005), 683–693.

Authors’ addresses: L. Cherfils, Université de La Rochelle, LMA, Avenue Michel Cré-
peau, 17042 La Rochelle Cedex, France, e-mail: laurence.cherfils@univ-lr.fr; A. Mi-

ranville, Université de Poitiers, Mathématiques, SP2MI, Téléport 2, Avenue Marie et Pierre
Curie, BP 30179, 86962 Futuroscope Chasseneuil Cedex, France, e-mail: alain.miranville
@math.univ-poitiers.fr.

115


		webmaster@dml.cz
	2020-07-02T12:29:27+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




