[1] Chen, F. D.:
Existence and uniqueness of almost periodic solutions for forced Rayleigh equations. Ann. Differ. Equations 17 (2001), 1-9.
MR 1829382
[2] Chen, F. D., Chen, X. X., Lin, F. X., Shi, J. L.:
Periodic solution and global attractivity of a class of differential equations with delays. Acta Math. Appl. Sin. 28 (2005), 55-64 Chinese.
MR 2157759
[3] Deimling, K.:
Nonlinear Functional Analysis. Springer Berlin (1985).
Zbl 0559.47040
[4] Gaines, R. E., Mawhin, J. L.:
Coincidence Degree, and Nonlinear Differential Equations. Lecture Notes in Mathematics, Vol. 568. Springer Berlin (1977).
DOI 10.1007/BFb0089537
[5] Huang, C., He, Y., Huang, L., Tan, W.:
New results on the periodic solutions for a kind of Reyleigh equation with two deviating arguments. Math. Comput. Modelling 46 (2007), 604-611.
DOI 10.1016/j.mcm.2006.11.024 |
MR 2329595
[6] Liu, F.:
On the existence of the periodic solutions of Rayleigh equation. Acta Math. Sin. 37 (1994), 639-644 Chinese.
Zbl 0812.34037
[7] Lu, S. P., Ge, W. G.:
Some new results on the existence of periodic solutions to a kind of Rayleigh equation with a deviating argument. Nonlinear Anal., Theory Methods Appl. 56 (2004), 501-514.
MR 2035324 |
Zbl 1078.34048
[9] Lu, S. P., Ge, W. G., Zheng, Z. X.:
Periodic solutions for a kind of Rayleigh equation with a deviating argument. Acta Math. Sin. 47 (2004), 299-304.
MR 2074353 |
Zbl 1073.34081
[12] Wang, G.-Q., Yan, J. R.:
Existence theorem of periodic positive solutions for the Rayleigh equation of retarded type. Portugal. Math. 57 (2000), 153-160.
Zbl 0963.34069