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Abstract. The paper deals with the existence of periodic solutions for a kind of non-
autonomous time-delay Rayleigh equation. With the continuation theorem of the coinci-
dence degree and a priori estimates, some new results on the existence of periodic solutions
for this kind of Rayleigh equation are established.
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1. Introduction

Liénard equations have been used to describe fluid mechanical and nonlinear elas-

tic mechanical phenomena. Rayleigh equation arises as a model including the delay

Duffing equation and the delay Liénard equation. The existence of periodic solutions

of Rayleigh equation has been extensively investigated (see [1]–[4], [6]–[9], [11]–[12]).

In [3]–[4], continuation theorems are introduced and applied to the existence of solu-

tions of differential equations. In the course of derivation of the existence of solutions

of differential equations, if appropriate a priori bounds for the periodic solutions of

the auxiliary equations for the differential equations can be obtained, then standard

procedures allow these continuation theorems to establish the existence of periodic

solutions of differential equations. Employing this approach, Peng et al. [10] and

Huang et al. [5] considered the existence of periodic solutions of a class of Rayleigh
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equation with two deviating arguments of the form

x′′(t) + f(x′(t)) + g1(t, x(t − τ1(t))) + g2(t, x(t − τ1(t))) = p(t)

where f, τ1, τ2, p : R → R and g1, g2 : R × R → R are real continuous functions,

f(0) = 0, τ1, τ2, p are T -periodic, and g1, g2 are T -periodic in the first argument.

Wang and Yan [13] considered the non-autonomous Rayleigh equation of retarded

type

(1) x′′(t) + f(t, x′(t − σ)) + g(t, x(t − τ)) = p(t)

where σ > 0, τ > 0, f, g ∈ C(R2,R), and f(t, x), g(t, x) are 2π-periodic in the

first argument t, p ∈ C(R,R) is periodic with period 2π. Under the assumptions

f(t, 0) = 0 for t ∈ R and
∫ 2π

0 p(s) ds = 0, they got the following result:

Theorem 1. Assume that there exist constants K > 0, M > 0 and d > 0 such

that

(A1) |f(t, x)| 6 K for (t, x) ∈ R
2;

(A2) xg(t, x) > 0 and |g(t, x)| > K for t ∈ R, |x| > d;

(A3) g(t, x) > −M for t ∈ R, x 6 −d;

(A4) sup
(t,x)∈R×[−d,d]

|g(t, x)| < +∞.

Then Eq. (1) has at least one periodic solution with period 2π.

Recently, Zhou and Tang [14] studied the non-autonomous Rayleigh equation with

time-varying delay

(2) x′′(t) + f(t, x′(t − σ)) + g(t, x(t − τ(t))) = p(t)

where σ > 0, τ, p ∈ C(R,R) are periodic with period 2π, f, g ∈ C(R2,R) and

f(t, x), g(t, x) are 2π-periodic in the first argument t, f(t, 0) = 0 for t ∈ R and
∫ 2π

0 p(s) ds = 0. They generalized and improved the corresponding results of [13]

and proved

Theorem 2. Assume that there exist constants r1 > 0, r2 > 0, d > 0, K > 0 and

M > 0 such that

(H1) |f(t, x)| 6 r1|x| + K for (t, x) ∈ R
2;

(H2) xg(t, x) > 0 and |g(t, x)| > r1|x| + K for t ∈ R, |x| > d;

(H3) g(t, x) > r2x − M for t ∈ R, x 6 −d.
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If

(3) 2π(r1 + (π + 1)r2) < 1,

then Eq. (2) has at least one 2π-periodic solution.

The purpose of this paper is to reconsider the existence of 2π-periodic solution to

Eq. (2). We will change the conditions imposed on f and g in [14]. Under some new

conditions for f and g, we shall employ a new a priori estimate of the periodic solution

to establish new sufficient conditions for the existence of a 2π-periodic solution to

Eq. (2).

For the sake of convenience, we denote by C2π the Banach space of continuous

2π-periodic functions, endowed with the norm ‖x‖0 = max
t∈[0,2π]

|x(t)|.

2. Main results

Theorem 3. Assume that there exist constants r1 > 0, r2 > 0, r3 > 0, d > 0,

K > 0, M > 0 and 0 < β < 1 such that

(H1) |f(t, x)| 6 r1|x|
β + K for (t, x) ∈ R

2;

(H2) xg(t, x) > 0 and |g(t, x)| > r2|x|
β + K for t ∈ R, |x| > d;

(H3) g(t, x) > r3x − M for t ∈ R, x 6 −d.

If

(4) 2πr3

[

π +
(r1

r2

)1/β
]

< 1,

then Eq. (2) has at least one 2π-periodic solution.

P r o o f. Consider the auxiliary equation

(5) x′′(t) + λf(t, x′(t − σ)) + λg(t, x(t − τ(t))) = λp(t).

From the results (degree theory) in [3]–[4] (see also the proof in [13]), it is sufficient

to show that there are positive constants M0 and M1, independent of λ, such that if

x(t) is a 2π-periodic solution of Eq. (5), then ‖x‖0 < M0 and ‖x′‖0 < M1.

Now, let x = x(t) be any 2π-periodic solution of Eq. (5). Integrating both sides of

Eq. (5) on [0, 2π], we have

(6)

∫ 2π

0

f(s, x′(s − σ)) + g(s, x(s − τ(s))) ds = 0.
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It follows that there exists a t1 ∈ [0, 2π] such that

(7) f(t1, x
′(t1 − σ)) + g(t1, x(t1 − τ(t1))) = 0.

We assert that there exists a t∗ ∈ [0, 2π] such that

(8) |x(t∗)| 6

[r1

r2

]1/β

‖x′‖0 + d.

Indeed, if |x(t1 − τ(t1))| 6 d, then obviously, |x(t1 − τ(t1))| 6 [r1/r2]
1/β‖x′‖0 + d.

If |x(t1 − τ(t1))| > d, it follows from Eq. (7), (H1) and (H2) that

r2|x(t1 − τ(t1))|
β + K 6 |g(t1, x(t1 − τ(t1)))|(9)

= |−f(t1, x
′(t1 − σ))| 6 r1|x

′(t1 − σ)|β + K.

So

(10) |x(t1 − τ(t1))| 6

[r1

r2

]1/β

|x′(t1 − σ)| 6

[r1

r2

]1/β

‖x′‖0 6

[r1

r2

]1/β

‖x′‖0 + d.

Since x(t) is periodic, there exists a t∗ ∈ [0, 2π] such that Inequality (8) holds.

For any t ∈ [t∗, t∗ + 2π],

(11) |x(t)| =

∣

∣

∣

∣

x(t∗) +

∫ t

t∗
x′(s) ds

∣

∣

∣

∣

6 |x(t∗)| +

∫ t

t∗
|x′(s)| ds.

Again

(12) |x(t)| =

∣

∣

∣

∣

x(t∗ + 2π) +

∫ t

t∗+2π

x′(s) ds

∣

∣

∣

∣

6 |x(t∗)| +

∫ t∗+2π

t

|x′(s)| ds.

Combining Inequalities (11) and (12) gives

(13) |x(t)| 6 |x(t∗)| +
1

2

∫ 2π

0

|x′(s)| ds.

From Inequalities (8) and (13) we have

‖x‖0 6 |x(t∗)| +
1

2

∫ 2π

0

|x′(s)| ds(14)

6

[r1

r2

]1/β

‖x′‖0 + d + π‖x′‖0 6

[

π +
(r1

r2

)1/β]

‖x′‖0 + d.
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As x(t) is a 2π-periodic solution of Eq. (5), there exists t0 ∈ [0, 2π] such that

x(t0) = max
s∈[0,2π]

x(s).

It follows that

x′(t0) = 0.

For any t ∈ [t0, t0 + 2π],

(15) |x′(t)| =

∣

∣

∣

∣

x′(t0) +

∫ t

t0

x′′(s) ds

∣

∣

∣

∣

6 |x′(t0)| +

∫ t

t0

|x′′(s)| ds.

Again

(16) |x′(t)| =

∣

∣

∣

∣

x′(t0 + 2π) +

∫ t

t0+2π

x′′(s) ds

∣

∣

∣

∣

6 |x′(t0)| +

∫ t0+2π

t

|x′′(s)| ds.

Combining Inequalities (15) and (16) gives

(17) |x′(t)| 6
1

2

∫ 2π

0

|x′′(s)| ds.

Let
E1 = {t : t ∈ [0, 2π], x(t − τ(t)) > d},

E2 = {t : t ∈ [0, 2π], x(t − τ(t)) < −d},

E3 = {t : t ∈ [0, 2π], |x(t − τ(t))| 6 d}.

From Eq. (6) and (H2) we obtain

∫

E1

|g(s, x(s − τ(s)))| ds =

∫

E1

g(s, x(s − τ(s))) ds =

∣

∣

∣

∣

∫

E1

g(s, x(s − τ(s))) ds

∣

∣

∣

∣

(18)

6

∫ 2π

0

|f(s, x′(s − σ))| ds +

(
∫

E2

+

∫

E3

)

|g(s, x(s − τ(s)))| ds.

Thus

‖x′‖0 6
1

2

∫ 2π

0

|x′′(s)| ds(19)

6
1

2

[
∫ 2π

0

|f(s, x′(s − σ))| ds +

∫ 2π

0

|g(s, x(s − τ(s)))| ds +

∫ 2π

0

|p(s)| ds

]

6
1

2

[
∫ 2π

0

|f(s, x′(s − σ))| ds

+

(
∫

E1

+

∫

E2

+

∫

E3

)

|g(s, x(s − τ(s)))| ds + 2π‖p‖0

]

83



6

∫ 2π

0

|f(s, x′(s − σ))| ds +

(
∫

E2

+

∫

E3

)

|g(s, x(s − τ(s)))| ds + π‖p‖0

6 2π[r1‖x
′‖β

0 + K] + 2π[r3‖x‖0 + M ] + 2πgd + π‖p‖0

6 2πr1‖x
′‖β

0 + 2πr3‖x‖0 + 2π(K + M + gd) + π‖p‖0

6 2πr1‖x
′‖β

0 + 2πr3

{[

π +
(r1

r2

)1/β]

‖x′‖0 + d
}

+ 2π(K + M + gd) + π‖p‖0

6 2πr1‖x
′‖β

0 + 2πr3

[

π +
(r1

r2

)1/β]

‖x′‖0 + 2π(K + M + r3d + gd) + π‖p‖0,

where gd = max
t∈[0,2π], |x|6d

|g(t, x)|.

Inequality (19) is equivalent to

(20)
{

1 − 2πr3

[

π +
(r1

r2

)1/β]}

‖x′‖0 6 2πr1‖x
′‖β

0 + 2π(K + M + r3d + gd) + π‖p‖0.

Since 2πr3[π + (r1/r2)
1/β

]

< 1 and 0 < β < 1, there exists a positive constant

M1 > 0 such that

(21) ‖x′‖0 < M1.

Let M0 =
[

π + (r1/r2)
1/β

]

M1 + d.

It follows from Inequality (21) that

(22) ‖x‖0 6

[

π +
(r1

r2

)1/β]

‖x′‖0 + d 6

[

π +
(r1

r2

)1/β]

M1 + d = M0.

This completes the proof. �

Similarly, we have the following

Theorem 4. Assume that there exist constants r1 > 0, r2 > 0, r3 > 0, d > 0,

K > 0, M > 0 and 0 < β < 1 such that

(H1) |f(t, x)| 6 r1|x|
β + K for (t, x) ∈ R

2;

(H2) xg(t, x) > 0 and |g(t, x)| > r2|x|
β + K for t ∈ R, |x| > d;

(H3) g(t, x) 6 r3x + M for t ∈ R, x > d.

If

(23) 2πr3

[

π +
(r1

r2

)1/β]

< 1,

then Eq. (2) has at least one 2π-periodic solution.

84



References

[1] F.D. Chen: Existence and uniqueness of almost periodic solutions for forced Rayleigh
equations. Ann. Differ. Equations 17 (2001), 1–9.

[2] F.D. Chen, X.X. Chen, F. X. Lin, J. L. Shi: Periodic solution and global attractivity
of a class of differential equations with delays. Acta Math. Appl. Sin. 28 (2005), 55–64.
(In Chinese.)

[3] K. Deimling: Nonlinear Functional Analysis. Springer, Berlin, 1985.
[4] R.E. Gaines, J. L. Mawhin: Coincidence Degree, and Nonlinear Differential Equations.
Lecture Notes in Mathematics, Vol. 568. Springer, Berlin, 1977.

[5] C. Huang, Y. He, L. Huang, W. Tan: New results on the periodic solutions for a kind of
Reyleigh equation with two deviating arguments. Math. Comput. Modelling 46 (2007),
604–611.

[6] F. Liu: On the existence of the periodic solutions of Rayleigh equation. Acta Math. Sin.
37 (1994), 639–644. (In Chinese.)

[7] S.P. Lu, W.G. Ge: Some new results on the existence of periodic solutions to a kind of
Rayleigh equation with a deviating argument. Nonlinear Anal., Theory Methods Appl.
56 (2004), 501–514.

[8] S.P. Lu, W.G. Ge, Z.X. Zheng: Periodic solutions for a kind of Rayleigh equation with
a deviating argument. Appl. Math. Lett. 17 (2004), 443–449.

[9] S.P. Lu, W.G. Ge, Z.X. Zheng: Periodic solutions for a kind of Rayleigh equation with
a deviating argument. Acta Math. Sin. 47 (2004), 299–304.

[10] L. Peng: Periodic solutions for a kind of Rayleigh equation with two deviating argu-
ments. J. Franklin Inst. 7 (2006), 676–687.

[11] G.-Q. Wang, S. S. Cheng: A priori bounds for periodic solutions of a delay Rayleigh
equation. Appl. Math. Lett. 12 (1999), 41–44.

[12] G.-Q. Wang, J. R. Yan: Existence theorem of periodic positive solutions for the Rayleigh
equation of retarded type. Portugal. Math. 57 (2000), 153–160.

[13] G.-Q. Wang, J. R. Yan: On existence of periodic solutions of the Rayleigh equation of
retarded type. Int. J. Math. Math. Sci. 23 (2000), 65–68.

[14] Y. Zhou, X. Tang: On existence of periodic solutions of Rayleigh equation of retarded
type. J. Comput. Appl. Math. 203 (2007), 1–5.

Authors’ addresses: Mei-Lan Tang,Xin-Ge Liu (corresponding author), School of Math-
ematical Science and Computing Technology, Central South University, Changsha, Hu-
nan 410083, P.R.China, e-mail: liuxgliuhua@163.com; Xin-Bi Liu, School of Materials
Science and Engineering, Central South University, Changsha, Hunan 410083, P. R.China.

85


		webmaster@dml.cz
	2020-07-02T12:28:50+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




