[1] Andreani, R., Martínez, J. M.:
On the solution of the extended linear complementarity problem. Linear Algebra Appl. 281 (1998), 247-257.
MR 1645363
[3] Clarke, F. H.:
Optimization and Nonsmooth Analysis, 2nd ed. Classic Appl. Math. 5. SIAM Philadephia (1990).
MR 1058436
[4] Conn, A. R., Gould, N. I. M., Toint, P. H.:
Trust-Region Methods. SIAM Philadelphia (2000).
MR 1774899 |
Zbl 0958.65071
[5] Cottle, R. W., Pang, J.-S., Stone, R. E.:
The Linear Complementarity Problem. Academic Press Boston (1992).
MR 1150683 |
Zbl 0757.90078
[6] Dennis, J. E., Schnabel, R. B.:
Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall Englewood Cliffs (1983).
MR 0702023 |
Zbl 0579.65058
[8] Fan, J. Y., Yuan, Y. X.:
A new trust region algorithm with trust region radius converging to zero. In: Proceedings of the 5th International Conference on Optimization: Techniques and Applications (Hongkong, December 2001) D. Li Hongkong (2001), 786-794.
MR 3522937
[10] Fischer, A.:
An NCP-function and its use for the solution of complementarity problems. D.-Z. Du, L. Qi, R. Womersley Recent Advances in Nonsmooth Optimization World Scientific Singapore (1995), 88-105.
MR 1459996 |
Zbl 0948.90133
[16] Kanzow, C., Zupke, M.:
Inexact trust-region methods for nonlinear complementarity problems. M. Fukushima, L. Qi Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods Kluwer Academic Publishers Norwell (1999), 211-233.
MR 1682704 |
Zbl 0927.65083
[20] Powell, M. J. D.:
Convergence properties of a class of minimization algorithms. In: Nonlinear Programming O. L. Mangasarian, R. R. Meyer, S. M. Robinson Academic Press New York (1975), 1-27.
MR 0386270 |
Zbl 0321.90045
[21] Qi, H. D., Qi, L., Sun, D. F.:
Solving Karush-Kuhn-Tucker systems via the trust region and conjugate gradient methods. SIAM J. Optim. 14 (2003), 439-463.
DOI 10.1137/S105262340038256X |
MR 2048162
[25] Sznajder, R., Gowda, M. S.: Generalizations of $P_0$ and {\bf P}-properties; extended vertical and horizontal linear complementarity problems. Linear Algebra Appl. 94 (1997), 449-467.
[27] Ulbrich, M.:
Nonmonotone trust-region methods for bound-constrained semismooth equation with application to nonlinear mixed complementarity problems. SIAM J. Optim. 11 (2001), 889-917.
DOI 10.1137/S1052623499356344 |
MR 1855213
[29] Zhang, J. Z., Xiu, N. H.:
Global $s$-type error bound for the extended linear complementarity problem and its applications. Math. Program. 88 (2000), 391-410.
DOI 10.1007/s101070050023 |
MR 1783980
[30] Zhang, X. S., Zhang, J. L., Liao, L. Z.:
An adaptive trust region method and its convergence. Sci. China, Ser. A 45 (2002), 620-631.
MR 1911178 |
Zbl 1105.90361