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Abstract. By using some NCP functions, we reformulate the extended linear comple-
mentarity problem as a nonsmooth equation. Then we propose a self-adaptive trust region
algorithm for solving this nonsmooth equation. The novelty of this method is that the trust
region radius is controlled by the objective function value which can be adjusted automati-
cally according to the algorithm. The global convergence is obtained under mild conditions
and the local superlinear convergence rate is also established under strict complementarity
conditions.
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1. Introduction

The extended linear complementarity problem (XLCP) introduced by Mangasar-

ian and Pang [19] is to find a pair of vectors x and y in R
n such that

(1) Mx − Ny ∈ P , x > 0, y > 0, 〈x, y〉 = 0,

where M and N are two real matrices of order m × n, P is a polyhedral set in R
m

and 〈·, ·〉 denotes the usual inner product. In the special case when m = n and P is
a singleton, XLCP reduces to the horizontal linear complementarity which has been

a subject of extensive research in recent years [2], [11], [13], [25], [28]. If one further

assumes that N is the identity matrix, then the classical linear complementarity

problem [5] is obtained.

*This work is supported by National Natural Science Foundation of China (No. 10671126)
and Shanghai Leading Academic Discipline Project (S30501).
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Many researchers have studied the XLCP. For example, Mangasarian and

Pang [19] established a number of properties of XLCP and the following quadratic

bilinear program (BLP):

(2) min〈x, y〉 such that Mx − Ny ∈ P , x > 0, y > 0.

It was shown that if the matrix MNT is copositive on the dual of the recession cone

of the set P , then every Kuhn-Tucker point of (2) is a solution of XLCP. A further
study of XLCP and the associated BLP was undertaken by Gowda [12]. Recently,

Andreani, Martínez [1] and Solodov [26] considered reformulating the XLCP as the

unconstrained or nonnegative constrained optimization problem, and then gave some

sufficient conditions for every stationary point of the optimization problem to be a

solution of XLCP. More recently, Zhang and Xiu [29] considered the error bound

result. We note that all these researchers concentrate on the theoretical study while

there are few algorithms available.

The aim of this paper is to propose a solution method for the XLCP. For conve-

nience, we assumem = n, and the polyhedral set P in Rn appearing in the statement

of XLCP (1) is presented as

P = {u ∈ R
n : Au > h},

where A is an n × n real matrix and h ∈ R
n. For this representation, the recession

cone of the set P is the set

0+P = {u ∈ R
n : Au > 0},

and its dual is

(0+P)∗ = {v ∈ R
n : 〈v, u〉 > 0 for all u ∈ 0+P} = {v = AT µ for some µ > 0},

where AT denotes the transpose of the matrix A. Finally, we recall that a square

matrix Q is said to be copositive on a cone K if 〈Qv, v〉 > 0 for all v ∈ K.
Throughout this paper, we assume that the feasible set of XLCP is nonempty:

{(x, y) : Mx − Ny ∈ P , x > 0, y > 0} 6= ∅.

Relying on the discussion in [26] and using some NCP function (a function ϕ :

R
2 → R is called an NCP function if for any (a, b)T ∈ R

2, ϕ(a, b) = 0 ⇔ a > 0,
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b > 0, ab = 0, see [9], [10], [17] for example), we know that solving XLCP (1) is

equivalent to solving the system of nonlinear equation

(3) Φ(x, y, z) =





Φ(x, y)

AMx − ANy − b − z

Φ+(z)



 = 0

where Φ(x, y) = (ϕ(x1, y1), ϕ(x2, y2), . . . , ϕ(xn, yn))T ∈ R
n with ϕ(a, b) = a + b −√

a2 + b2 for any a, b ∈ R and Φ+(z) = (ϕ+(z1), ϕ+(z2), . . . , ϕ+(zn))T ∈ R
n with

ϕ+(a) = max(−a, 0) for any a ∈ R. For convenience, we rewrite w = (xT , yT , zT )T

and accordingly we denote Φ(w) = Φ(x, y, z). Then solving the XLCP is equivalent

to solving the minimization problem

(4) min Ψ(w) =
1

2
‖Φ(w)‖2,

with the objective function value zero.

The trust region method is one of the most important methods for problem (4)

arising in some important mathematical problems such as nonlinear complementarity

and variational inequalities problems, see [4], [15], [16], [21], [27] for example. In

trust region methods, the initial trust region radius plays an important role since

it determines the direction and stepsize of the current iteration. However, in the

traditional trust region methods, the initial radius is given randomly which effects the

efficiency of the algorithm dramatically. So many self-adaptive trust region methods

(for unconstrained optimization) were proposed in recent years [8], [14], [24], [30].

The main idea of these self-adaptive trust region methods is that the initial trust

region radius is controlled by the gradient of the current point. Numerical tests

showed that the self-adaptive method is encouraging.

Motivated by the idea of [8], [14], [24], [30], in this paper we propose a self-

adaptive trust region method for problem (4) arising in the XLCP. In our method,

the trust radius is controlled by the objective function value which can be adjusted

automatically according to the algorithm. The global convergence of the algorithm

is obtained under certain conditions and the local superlinear convergence rate is

also obtained under the strict complementarity assumptions.

The paper is organized as follows: In Section 2, we give some basic preliminaries.

In Section 3, we describe the algorithm model and prove its global convergence.

The local superlinear convergence rate is proved in Section 4. Numerical tests are

reported in Section 5 and the conclusion is given in Section 6.
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2. Some preliminaries

Let G : R
n → R

n be locally Lipschitz continuous, according to Rademacher’s

theorem, G is differentiable almost everywhere. Let DG be the set where G is

differentiable, the B-differential of G at x ∈ R
n is defined by

∂BG(x) =
{

H ∈ R
n×n : H = lim

xk→x,
xk∈DG

G′(xk)
}

.

The generalized Jacobian of G at x in the sense of Clarke [3] is defined by

∂G(x) = conv ∂BG(x).

Furthermore, we write

∂cG(x)T = ∂G1(x)T × ∂G2(x)T × . . . × ∂Gn(x)T

for the C-subdifferential ofG at x, where the right-hand side denotes a set of matrices

whose ith column can be any element from the generalized gradient of ∂Gi(x)T .

Similar to the technique of proof of Facchinei and Soares [7], Qi [22] and Qi and

Sun [23], see also Kanzow and Pieper [18], we can obtain the following semismooth

properties.

Lemma 2.1. Assume that {wk} is a convergent sequence with a limit point w⋆.

Then the function Φ defined by (3) is semismooth, which means

‖Φ(wk) − Φ(w⋆) − Hk(wk − w⋆)‖ = o(‖wk − w⋆)‖

for any Hk ∈ ∂cΦ(wk).

Lemma 2.2. The generalized gradient of the function ϕ(a, b) at a point (a, b) ∈ R
2

is equal to the set of all (ga, gb)
T ∈ R

2 with

(ga, gb) =







(

1 − a

‖(a, b)‖ , 1 − b

‖(a, b)‖
)

if (a, b) 6= 0,

(1 − ξ, 1 − ζ) if (a, b) = 0,

where (ξ, ζ) is any vector satisfying ‖(ξ, ζ)‖ 6 1. The generalized gradient of the

function ϕ+ at a point a is equal to

∂ϕ+(a) =











1 if a < 0,

[0, 1] if a = 0,

0 if a > 0.

As a consequence of Lemma 2.2 we obtain the following result.
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Theorem 2.1. Let w ∈ R
n × R

n × R
n be given. Then any matrix H ∈ ∂cΦ(w)

has the form

H =





Da(x) Db(y) 0

AM −AN −I

0 0 Da(z)





where

Da(x) := diag(ai(x)), Db(y) := diag(bi(y)), Da(z) := diag(ai(z))

and (ai(x), bi(y)) ∈ (ga, gb) and ai(z) ∈ ϕ+(z) are defined in Lemma 2.2.

In what follows we give conditions that guarantee the stationary point of (4) to

be a solution of the XLCP (1). The proof can be found in [26].

Lemma 2.3. Suppose that MNT is copositive on 0+P . Then the stationary
point of (4) is a solution of XLCP (1).

Lemma 2.4. The function Ψ(w) is continuously differentiable with ∇Ψ(w) =

HT Φ(w), where H ∈ ∂CΦ(w).

3. Algorithm model and its global convergence

In this section we state our algorithm for solving the XLCP and prove its global

convergence.

For a given iteration point wk we will solve the following trust region subproblem:

(5) min Qk(d) =
1

2
‖Φ(wk) + HT

k d‖2, such that ‖d‖ 6 ∆k,

where Hk ∈ ∂CΦ(wk) and ∆k > 0 is the trust region radius.

Let dk be a solution of problem (5). We denote

Aredk =
1

2
‖Φ(wk)‖2 − 1

2
‖Φ(wk + dk)‖2, Predk = Qk(0) − Qk(dk)

and compute rk = Aredk/Predk.

Algorithm 3.1.

Step 0. Given w0 ∈ R
n × R

n × R
n, η ∈ (0, 1), c ∈ (0, 1), set p0 = 0, k = 0.

Step 1. If Φ(wk) = 0 or ∇Ψ(wk) = 0, stop.
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Step 2. Choose Hk ∈ ∂CΦ(wk), if Hk is nonsingular, set Mk = ‖H−1
k ‖, otherwise,

choose µk > 0 such that Hk +µkI is nonsingular, setMk = ‖(Hk +µkI)−1‖
and solve the following trust region subproblem:

(6) min
1

2
‖Φ(wk) + HT

k d‖2, such that ‖d‖ 6 cpkMk‖Φ(wk)‖.

Denote the solution of (6) by dk, if dk = 0 stop.

Step 3. Compute rk, if rk > η, set xk+1 = xk + dk, pk+1 = 0, k := k + 1, go to

Step 1, otherwise, set pk+1 = pk + 1, go to Step 2.

The kth iteration is called successful when rk > η, otherwise, the kth iteration is

called unsuccessful. The following result can be found in Powell [20].

Lemma 3.1. Let dk be computed by (6). Then the inequality

(7) Predk >
1

2
‖∇Ψ(wk)‖min

{

cpkMk‖Φ(wk)‖, ‖∇Ψ(wk)‖
‖HT

k Hk‖

}

holds for all k.

Lemma 3.2. Let {wk} be a sequence generated by Algorithm 3.1 and let
{wk}K be a subsequence converging to w⋆. Assume there exists a constant µ > 0

such that µk < µ for all k. If ‖Φ(w⋆)‖ 6= 0 and ‖∇Ψ(w⋆)‖ 6= 0, then

(8) lim sup
k→∞, k∈K

pk < +∞.

P r o o f. Similar to the technique of proof in [16] or [30]. �

Lemma 3.2 shows that Algorithm 3.1 is well-defined. In what follows we prove our

main convergence result.

Theorem 3.1. Let {wk} be a sequence generated by Algorithm 3.1, w⋆ be an

accumulation point of {wk}. Then we have ‖Φ(w⋆)‖ = 0 or ‖∇Ψ(w⋆)‖ = 0.

P r o o f. We assume that {wk}K → w⋆. Since wk+1 = wk for all unsuccessful

iterations k and since there are infinitely many successful iterations by Lemma 3.2,

we can assume without loss of generality that all iterations k ∈ K are successful. If

‖Φ(w⋆)‖ = 0, the conclusion is proved. Otherwise, there exists a positive constant δ0

such that ‖Φ(wk)‖ > δ0 for all k ∈ K. Suppose that ‖∇Ψ(w⋆)‖ 6= 0, then by the up-

per semicontinuity of the generalized Jacobian there exist two positive constants δ1,

δ2 such that

‖∇Ψ(wk)‖ > δ1 and ‖HT
k Hk‖ 6 δ2
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for all k ∈ K. Since the iterations k ∈ K are successful, we have rk > η for all

k ∈ K. On the other hand, by the definition ofMk, there exists an M > 0 such that

Mk > M for all k ∈ K. Therefore we have

Ψ(wk) − Ψ(wk+1) > η Predk(9)

>
1

2
η‖∇Ψ(wk)‖min

{

cpkMk‖Φ(wk)‖, ‖∇Ψ(wk)‖
‖HT

k Hk‖

}

>
1

2
ηδ1 min

{

cpkMδ0,
δ1

δ2

}

for all k ∈ K. Since the function value sequence {Ψ(wk)} decreases monotonically
and is bounded below from zero, it is convergent. From (9) we have

∑

k∈K

1

2
ηδ1 min

{

cpkMδ0,
δ1

δ2

}

6
∑

k∈K

Ψ(wk) − Ψ(wk+1)

6

∞
∑

k=0

Ψ(wk) − Ψ(wk+1) < +∞.

This implies pk → +∞, a contradiction to Lemma 3.2. �

By Lemma 2.3 and Theorem 3.1 we know that ifMNT is copositive on 0+P , then

every accumulation point of the sequence generated by Algorithm 3.1 is a solution

of the XLCP.

4. Local convergence rate

In this section we will analyze the local convergence of Algorithm 3.1. We first

prove the nonsingularity of the Jacobian of Φ(w) at a solution of the XLCP.

Lemma 4.1. Assume the matrix AMNT AT is positive definite, w⋆ = (x⋆, y⋆, z⋆)

is a solution of the XLCP and (x⋆, y⋆, z⋆) satisfies x⋆
i + y⋆

i > 0, z⋆ > 0. Then the

Jacobian Φ′(w⋆) is nonsingular. Furthermore, w⋆ = (x⋆, y⋆, z⋆) is the unique solution

of the equation Φ(w) = 0.

P r o o f. The condition in the lemma implies that Φ is continuously differentiable.

Define two index sets

B1 = {i ∈ {1, 2, . . . , n} : x⋆
i > 0}, B2 = {i ∈ {1, 2, . . . , n} : y⋆

i > 0};

then B1 ∪ B2 = {1, 2, . . . , n}. Note that

Φ′(w⋆)T =





Da(x⋆) MT AT 0

Db(y
⋆) −NT AT 0

0 −I I




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with

Da(x⋆) = diag
(∂ϕ

∂a
(x⋆

i , y
⋆
i )

)

, Db(x
⋆) = diag

(∂ϕ

∂b
(x⋆

i , y
⋆
i )

)

.

By strict complementarity, we have

∂ϕ

∂a
(x⋆

i , y
⋆
i ) =

{

0 if i ∈ B1,

1 if i ∈ B2;

∂ϕ

∂b
(x⋆

i , y
⋆
i ) =

{

1 if i ∈ B1,

0 if i ∈ B2.

Now assume that there exists a vector q = (q(1), q(2), q(3)) such that

Φ′(w⋆)T q = 0.

Then we have

Da(x⋆)q(1) + MT AT q(2) = 0,(10)

Db(x
⋆)q(1) − NT AT q(2) = 0,(11)

−q(2) + q(3) = 0.(12)

By (10), (11) we have

(13) (q(1))T Da(x⋆)Db(y
⋆)q(1) = −(q(2))T AMNT AT q(2).

Since the matrix Da(x⋆)Db(y
⋆) is positive semidefinite and AMNT AT is positive

definite, (13) implies that q(2) = 0 and therefore q(3) = 0 is obtained immediately

from (13).

Now (10), (11) become

(14) Da(x
⋆)q(1) = 0, Db(x

⋆)q(1) = 0.

Let q
(1)
B1
denote the |B1| dimension subvector of q(1) consisting of the components

q
(1)
i (i ∈ B1); (Da)B1

, (Db)B1
denote the |B1| × |B1| diagonal matrix containing the

diagonal entries aii (i ∈ B1) for the matrix Da, Db. Similarly, we can define the

subvector and submatrix associated with the set B2. Then from (14) we obtain that

(Da)B1
q
(1)
B1

= 0, (Db)B2
q
(1)
B2

= 0,

which implies that

q(1) = (q
(1)
B1

q
(1)
B2

) = 0.

This shows that the Jacobian Φ′(w⋆) is nonsingular.
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Now, by the standard result of [6], there exists a constant c1 > 0 such that

‖Φ(x, y, z)‖ > c1‖(x, y, z) − (x⋆, y⋆, z⋆)‖

for all (x, y, z) sufficiently close to (x⋆, y⋆, z⋆); this inequality shows that (x⋆, y⋆, z⋆)

is the locally unique solution of the equation Φ(x, y, z) = 0. On the other hand,

since the solution set is convex, it follows that (x⋆, y⋆, z⋆) is also the global unique

solution. This completes the proof. �

A point w⋆ ∈ R
n ×R

n ×R
n is said to be a BD regular solution of the XLCP if all

elements in the generalized Jacobian ∂Φ(w⋆) are nonsingular.

By Lemma 4.1 we know that the generalized Newton direction exists and that

it is the unique solution of the trust region subproblem (6), hence similarly to [16,

Theorem 3.10] we get the following local convergence result.

Theorem 4.1. Let {wk} be any sequence generated by Algorithm 3.1. If {wk} has
an accumulation point w⋆ which is a BD-regular solution of the XLCP, then the whole

sequence {wk} converges to w⋆ superlinearly.

5. Numerical tests

In this section we test our algorithm on some typical test problems. The program

code was written in MATLAB and run in MATLAB 7.1 environment. The test

problems are LCP problems, i.e., N is an identity matrix and P is a singleton, which
means we find x ∈ R

n, y ∈ R
n such that

Mx − y = −q, x > 0, y > 0, 〈x, y〉 = 0,

where q ∈ R
n.

The parameters are chosen as η = 0.1, c = 0.5. The stop criterion is ‖∇Ψ(wk)‖ < ε

or ‖Φ(wk)‖ < ε with ε = 10−5. We compare our algorithm with the traditional trust

region algorithm, where for the latter, we used some different initial trust region radii

∆0 = 0.01, 0.1, 10 respectively. The test results are summarized in Tab. 1, where

we use No. to denote the number of our problems, Size denotes the size of our test

problems, nt denotes the number of the iterations, time denotes the CPU time used

when the iteration is stopped. We also stop the execution when 5000 iterations were

completed without achieving convergence and denote this situation by ∗. In the last
row, we use AV to denote the average iteration for all test problems.

From Tab. 1 we see that our algorithm can solve these problems efficiently. Com-

pared with the traditional algorithm, our algorithm is more efficient for problems 2,
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9 and 10. For the others, although there exists a ∆0 such that the traditional algo-

rithm is more efficient, the ∆0 is different for different problems, which shows that

the traditional algorithm depends on the initial trust region radius. At last, from the

average iteration for all test problems we see that our algorithm is the most efficient

choice.

∆0 = 0.01: ∆0 = 0.1: ∆0 = 10: adaptive:
No. Size

nt/time nt/time nt/time nt/time
1 2 5/0.5938 159/0.3594 5/0.2344 5/0.5938
2 16 232/2.05156 ∗ 124/1.1094 80/0.2188
3 4 175/0.4063 22/0.5156 94/2.1094 36/08281
4 3 99/0.6719 12/0.1094 6/0.0625 6/0.0781
5 3 1901/46.3438 13/0.1406 7/0.0781 11/0.1250
6 4 163/1.1094 17/0.1094 7/0.0781 5/0.0781
7 3 87/0.1.1563 10/0.1719 5/0.1250 5/0.0625
8 3 149/1.9531 18/0.2656 11/0.2031 12/0.1094
9 10 229/1.6719 949/7.3125 653/5.0938 124/0.1719
10 10 140/0.9531 859/6.7344 498/3.8125 120/0.2031
AV 318 228.8 141 40.4

Table 1. Numerical results.

The test problems are introduced as follows (see also [31]):

Problem 1: M =

(

1 1

1 1

)

, q = (−1,−1), the initial point is (0, 0, . . . , 0)T .

Problem 2: M =















1 2 2 . . . 2

0 1 2 . . . 2

0 0 1 . . . 2
...
...
...
. . .

...

0 0 0 . . . 1















, q = (−1, . . . ,−1), the initial point is

(0, 0, . . . , 0)T .

Problem 3: M =









0 0 10 20

0 0 30 15

10 20 0 0

30 15 0 0









, q = (−1,−1,−1,−1), the initial point is

(0, 0, . . . , 0)T .

Problem 4: M =





4 −1 0

−1 4 −1

0 −1 4



, q = (1, 0,−1), the initial point is (0, 0, . . . , 0)T .

Problem 5: M =





0 0 0

0 4 −1

0 −1 4



, q = (1, 0,−1), the initial point is (0, 0, . . . , 0)T .
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Problem 6: M =









4 2 2 1

2 4 0 1

2 0 2 2

−1 −1 −2 0









, q = (−8,−6,−4, 3), the initial point is

(0, 0, . . . , 0)T .

Problem 7: M =





0 1 0

0 0 1

0 −1 1



, q = (0, 0, 1), the initial point is (0, 0, . . . , 0)T .

Problem 8: M =





0 1 0

0 0 −2

0 2 1



, q = (0, 0, 1), the initial point is (0, 0, . . . , 0)T .

Problem 9: M =



















4 −2 0 0 . . . 0

1 4 −2 0 . . . 0

0 1 4 −2 . . . 0
...
. . .

. . .
. . .

. . .
...

0 . . . 0 1 4 −2

0 . . . 0 0 1 4



















, q = (−1, . . . ,−1), the initial point

is (0, 0, . . . , 0)T .

Problem 10: M =



















4 −1 0 0 . . . 0

−1 4 −1 0 . . . 0

0 −1 4 −1 . . . 0
...
. . .

. . .
. . .

. . .
...

0 . . . 0 −1 4 −1

0 . . . 0 0 −1 4



















, q = (−1, . . . ,−1), the initial

point is (0, 0, . . . , 0)T .

6. Conclusion

In this paper we consider a self-adaptive trust region method for the extended

linear complementarity problem. Under certain conditions, the global and local

convergence are obtained. The novelty of our algorithm is that the trust region

radius can be adjusted automatically according to the objective function; thus we

can avoid choosing the initial trust region radius blindly. From the numerical tests we

can see the efficiency of the proposed algorithm. How to obtain the local convergence

result without the strictly complementarity assumption deserves further study.
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