[1] Gasser, T. L., Müller, H.-G., Mammitzsch, V.:
Kernels for nonparametric curve estimation. J. R. Stat. Soc. B47 (1985), 238-251.
MR 0816088
[2] Granovsky, B. L., Müller, H.-G.:
Optimizing kernel methods: A unifying variational principle. Int. Stat. Rev. 59 (1991), 373-388.
DOI 10.2307/1403693
[3] Granovsky, B. L., Müller, H.-G., Pfeifer, C.:
Some remarks on optimal kernel function. Stat. Decis. 13 (1995), 101-116.
MR 1342732
[4] Härdle, W.:
Applied Nonparametric Regression. Cambridge University Press Cambridge (1990).
MR 1161622
[5] Horová, I.:
Gegenbauer polynomials, optimal kernels and Stancu operators. Approximation Theory and Function Series Budapest (Hungary), 1995 P. Vértesi et al. János Bolyai Mathematical Socity Budapest (1996), 227-235.
MR 1432671
[6] Horová, I.:
Some remarks on kernels. J. Comput. Anal. Appl. 2 (2000), 253-263.
MR 1778550
[7] Horová, I.: Optimization problems connected with kernel estimates. Signal Processing, Communications and Computer Science World Scientific and Engineering Society Press (2002), 339-334.
[8] Kolaček, J., Poměnková, J.: Comparative study of boundary effects for kernel smoothing. Austr. J. Stat. 35 (2006), 281-288.
[9] Mammitzsch, V.: The fluctuation of kernel estimators under certain moment conditions. Proc. ISI 1985 (1985), 17-18.
[10] Poměnková, J.:
Gasser-Müller's estimate, LI. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 3 (2004), Czech.
MR 2159138
[11] Poměnková, J.: Some aspects of smoothing the regression function. PhD. thesis University of Ostrava Ostrava (2005), Czech.
[12] Poměnková, J.: Optimal kernels. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, LII (2004), 69-77 Czech.
[13] Poměnková, J.: Optimum choice of the bandwidth using ${\rm AMSE}$ for the Gasser-Müller estimator. Applications of Mathematics and Statistics in Economy University of Economics and Faculty of Informatics and Statistics Praha (2004), 192-198.
[14] Szegö, G.: Orthogonal Polynomials. American Mathematical Society Colloquium Publications, Vol. 23. Am. Math. Soc. New York (1939).