Previous |  Up |  Next

Article

Keywords:
regression rank scores; Kolmogorov-Smirnov test; two sample problem; Cramér-von Mises test
Summary:
We derive the two-sample Kolmogorov-Smirnov type test when a nuisance linear regression is present. The test is based on regression rank scores and provides a natural extension of the classical Kolmogorov-Smirnov test. Its asymptotic distributions under the hypothesis and the local alternatives coincide with those of the classical test.
References:
[1] Gutenbrunner, C., Jurečková, J.: Regression rank scores and regression quantiles. Ann. Stat. 20 (1992), 305-330. DOI 10.1214/aos/1176348524 | MR 1150346
[2] Gutenbrunner, C., Jurečková, J., Koenker, R., Portnoy, S.: Tests of linear hypotheses based on regression rank scores. J. Nonparametric Stat. 2 (1993), 307-331. DOI 10.1080/10485259308832561 | MR 1256383
[3] Hájek, J.: Extension of the Kolmogorov-Smirnov test to regression alternatives. Proc. Bernoulli-Bayes-Laplace Seminar L. LeCam Univ. of California Press (1965), 45-60. MR 0198622
[4] Hájek, J., Šidák, Z.: Theory of Rank Tests. Academia Praha (1967). MR 0229351
[5] Jurečková, J.: Tests of Kolmogorov-Smirnov type based on regression rank scores. Information Theory, Stastistical Decision Functions, Random Processes. Trans. 11th Prague Conf., Prague 1990, Vol. B J. Á. Víšek Academia & Kluwer Praha & Dordrecht (1992), 41-49.
[6] Koenker, R., (1978), G. Bassett: Regression quantiles. Econometrica 46 (1978), 33-50. DOI 10.2307/1913643 | MR 0474644
Partner of
EuDML logo