Previous |  Up |  Next

Article

Keywords:
wet and dry durations of regional rainfall; quantile multiscaling; heavy tails; Pareto tail-index; semi-parametric statistical inference
Summary:
Durations of rain events and drought events over a given region provide important information about the water resources of the region. Of particular interest is the shape of upper tails of the probability distributions of such durations. Recent research suggests that the underlying probability distributions of such durations have heavy tails of hyperbolic type, across a wide range of spatial scales from 2 km to 120 km. These findings are based on radar measurements of spatially averaged rain rate (SARR) over a tropical oceanic region. The present work performs a nonparametric inference on the Pareto tail-index of wet and dry durations at each of those spatial scales, based on the same data, and compares it with conclusions based on the classical Hill estimator. The results are compared and discussed.
References:
[1] Adler, R. J., Feldman, R. E., \rm(eds.), M. S. Taqqu: A Practical Guide to Heavy Tails. Statistical Techniques and Applications. Birkhäuser Boston (1998). MR 1652283 | Zbl 0901.00010
[2] Cheng, S., Pan, J.: Asymptotic expansions of estimators for the tail index with applications. Scand. J. Stat. 25 (1998), 717-728. DOI 10.1111/1467-9469.00131 | MR 1666796 | Zbl 0932.62062
[3] Cheng, S., Peng, L.: Confidence intervals for the tail index. Bernoulli 7 (2001), 751-760. DOI 10.2307/3318540 | MR 1867084 | Zbl 0985.62039
[4] Haan, L. de, Stadtmüller, U.: Generalized regular variation of second order. J. Austr. Math. Soc., Ser. A 61 (1996), 381-395. DOI 10.1017/S144678870000046X | MR 1420345
[5] Michele, C. De, Pavlopoulos, H.: The variance-scale plot of intermittent time series and the ranges of scales. Preprint of working paper (2007).
[6] Doukhan, P., Oppenheim, G., \rm(eds.), M. S. Taqqu: Theory and Applications of Long-Range Dependence. Birkhäuser Boston (2003). MR 1956041 | Zbl 1005.00017
[7] Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events for Insurance and Finance. Springer Berlin (1997). MR 1458613
[8] Foufoula-Georgiou, E.: On scaling theories of space-time rainfall: Some recent results and open problems. Stochastic Methods in Hydrology: Rainfall, Landforms and Floods. Advanced Series on Statistical Sciences and Applied Probability, Vol. 7 O. E. Barndorff-Nielsen, V. K. Gupta, V. Perez-Abreu, E. C. Waymire World Scientific Singapore (1998), 129-171.
[9] Gritsis, J.: On the probability distribution of the duration of dry and wet spells in processes of spatially averaged rain rate. Master thesis Department of Statistics, Athens University of Economics and Business Athens (1997).
[10] Gupta, V. K.: Emergence of statistical scaling in floods on channel networks from complex runoff dynamics. Chaos Solitons Fractals 19 (2004), 357-365. DOI 10.1016/S0960-0779(03)00048-1 | Zbl 1139.86301
[11] Gupta, V. K., Waymire, E. C.: Multiscaling properties of spatial rainfall and river flow distributions. J. Geophys. Res. 95 (1990), 1999-2009. DOI 10.1029/JD095iD03p01999
[12] Gupta, V. K., Waymire, E. C.: A statistical analysis of mesoscale rainfall as a random cascade. J. Appl. Meteorology 32 (1993), 251-267. DOI 10.1175/1520-0450(1993)032<0251:ASAOMR>2.0.CO;2
[13] Gupta, V. K., Waymire, E. C.: Spatial variability and scale invariance in hydrologic regionalization. In: Scale Dependence and Scale Invariance in Hydrology G. Sposito Cambridge University Press Cambridge (1998), 88-135.
[14] Haeusler, E., Segers, J.: Assessing confidence intervals for the tail index by Edgeworth expansions for the Hill estimator. Bernoulli 13 (2007), 175-194. DOI 10.3150/07-BEJ5175 | MR 2307402 | Zbl 1111.62045
[15] Heath, D., Resnick, S., Samorodnitsky, G.: Heavy tails and long range dependence in on/off processes and associated fluid models. Math. Oper. Res. 23 (1998), 145-165. DOI 10.1287/moor.23.1.145 | MR 1606462 | Zbl 0981.60092
[16] Jurečková, J.: Tests of tails based on extreme regression quantiles. Stat. Probab. Lett. 49 (2000), 53-61. DOI 10.1016/S0167-7152(00)00031-6 | MR 1789664
[17] Jurečková, J.: Statistical tests on tail index of a probability distribution. METRON---International Journal of Statistics LXI (2003), 151-190. MR 2019798
[18] Jurečková, J., Koul, H. L., Picek, J.: Testing the tail index in autoregressive models. Annals of the Institute of Statistical Mathematics (to appear). Published online: 10.1007/s10463-007-0155-z. MR 2529967
[19] Jurečková, J., Picek, J.: A class of tests on the tail index. Extremes 4 (2001), 165-183. DOI 10.1023/A:1013925226836 | MR 1893871 | Zbl 1008.62045
[20] Jurečková, J., Picek, J.: Estimates of the tail index based on nonparametric tests. Theory and Applications of Recent Robust Methods. Series: Statistics for Industry and Technology M. Hubert, G. Pison, A. Struyf, S. Van Aelst Birkhäuser Basel (2004), 141-152. MR 2085892 | Zbl 1088.62063
[21] Kedem, B., Chiu, L. S.: Are rain rate processes self similar?. Water Resources Research 23 (1987), 1816-1818. DOI 10.1029/WR023i010p01816
[22] Kundu, P. K., Bell, T. L.: A stochastic model of space-time variability of mesoscale rainfall: Statistics of spatial averages. Water Resources Research 39 (2003), 1328, doi:10.1029/2002WR001802. DOI 10.1029/2002WR001802
[23] Lovejoy, S., Mandelbrot, B. B.: Fractal properties of rain and a fractal model. Tellus 37A (1985), 209-232.
[24] Lovejoy, S., Schertzer, D.: Generalized scale invariance in the atmosphere and fractal models of rain. Water Resources Research 21 (1985), 1233-1250. DOI 10.1029/WR021i008p01233
[25] Lovejoy, S., Schertzer, D.: Multifractals and rain. New Uncertainty Concepts in Hydrology and Water Resources Z. W. Kunzewicz Cambridge University Press Cambridge (1995).
[26] Lowen, S. B., Teich, M. C.: Fractal renewal processes generate $1/f$ noise. Phys. Rev. E 47 (1993), 992-1001. DOI 10.1103/PhysRevE.47.992
[27] Lowen, S. B., Teich, M. C.: Fractal-Based Point Processes. Wiley Series in Probability and Statistics. John Wiley & Sons Hoboken (2005). MR 2162101
[28] Mandelbrot, B. B.: The Fractal Geometry of Nature. W. H. Freeman San Francisco (1982). MR 0665254 | Zbl 0504.28001
[29] Marsan, D., Lovejoy, S., Schertzer, D.: Causal space-time multifractal processes: Predictability and forecasting of rain fields. J. Geophys. Res. 101 (D21) (1996), 26333-26346. DOI 10.1029/96JD01840
[30] Over, T., Gupta, V. K.: Statistical analysis of meso-scale rainfall: Dependence of a random cascade generator on large-scale forcing. J. Appl. Meteor. 33 (1994), 1526-1542. DOI 10.1175/1520-0450(1994)033<1526:SAOMRD>2.0.CO;2
[31] Over, T., Gupta, V. K.: A space-time theory of mesoscale rainfall using random cascades. J. Geophys. Res. 101 (1996), 26319-26331. DOI 10.1029/96JD02033
[32] Pavlopoulos, H., Gritsis, J.: Wet and dry epoch durations of spatially averaged rain rate, their probability distributions and scaling properties. Environ. Ecol. Stat. 6 (1999), 351-380. DOI 10.1023/A:1009616018874
[33] Pavlopoulos, H., Gupta, V. K.: On the intermittence of rainfields: A space-time approach. Technical Report No. 143 Department of Statistics, Athens University of Economics Athens (2001).
[34] Pavlopoulos, H., Gupta, V. K.: Scale invariance of regional wet and dry durations of rain fields: A diagnostic study. J. Geophys. Res. 108 (D8) (2003), 8387, doi:10.1029/2002JD002763. DOI 10.1029/2002JD002763
[35] Picek, J.: Confidence intervals of the tail index. In: Proceedings in Computational Statistics A. Rizzi, M. Vichi Physica Heidelberg (2006), 1301-1308. MR 2347200
[36] Picek, J., Jurečková, J.: A class of tests on the tail index using the modified extreme regression quantiles. ROBUST'2000 J. Antoch, G. Dohnal Union of Czech Mathematicians and Physicists Prague (2001), 217-226. MR 1893871
[37] Schmitt, F., Svannistsem, S., Barbosa, A.: Modeling of rainfall time series using two-state renewal processes and multifractals. J. Geophys. Res. 103 (D18) (1998), 181-194. DOI 10.1029/98JD02071
[38] Short, D. A., Kucera, P. A., Ferrier, B. S., Gerlach, J. C., Rutledge, S. A., Thiele, O. W.: Shipboard radar rainfall patterns within the TOGA/COARE IFA. Bull. Am. Meteor. Soc. 78 (1997), 2817-2836. DOI 10.1175/1520-0477(1997)078<2817:SRRPWT>2.0.CO;2
[39] Taqqu, M. S., Levy, J. B.: Using renewal processes to generate long-range dependence and high variability. Dependence in Probability and Statistics E. Eberlein, M. S. Taqqu Birkhäuser (1986), 73-89. MR 0899985 | Zbl 0601.60085
[40] Tessier, Y., Lovejoy, S., Schertzer, D.: Universal multifractals: Theory and observations of rain and clouds. J. Appl. Meteor. 32 (1993), 223-250. DOI 10.1175/1520-0450(1993)032<0223:UMTAOF>2.0.CO;2
[41] Willinger, W., Taqqu, M. S., Sherman, R., Wilson, D. V.: Self-similarity through high variability: Statistical analysis of Ethernet LAN traffic at the source level (Extended Version). IEEE/ACM Transactions on Networking 5 (1997), 71-86. DOI 10.1109/90.554723
Partner of
EuDML logo