Previous |  Up |  Next

Article

Keywords:
moving averages; linear regression; Whittle quadratic forms; chi-square
Summary:
This paper considers the problem of testing a sub-hypothesis in homoscedastic linear regression models when the covariate and error processes form independent long memory moving averages. The asymptotic null distribution of the likelihood ratio type test based on Whittle quadratic forms is shown to be a chi-square distribution. Additionally, the estimators of the slope parameters obtained by minimizing the Whittle dispersion is seen to be $n^{1/2}$-consistent for all values of the long memory parameters of the design and error processes.
References:
[1] Baillie, R.: Long memory processes and fractional integration in econometrics. J. Econom. 73 (1996), 5-59. DOI 10.1016/0304-4076(95)01732-1 | MR 1410000 | Zbl 0854.62099
[2] Booth, G. G., Kaen, R. R., Koves, P. E.: R/S analysis of foreign exchange rates under two international money regimes. J. Monet. Econom. 10 (1982), 4070-415.
[3] Beran, J.: Statistical methods for data with long-range dependence (with discussion). Stat. Sci. 7 (1992), 404-427. DOI 10.1214/ss/1177011122
[4] Beran, J.: Statistics for Long Memory Processes. Monographs on Statistics and Applied Probability, Vol. 61. Chapman and Hall London (1994). MR 1304490
[5] Cheung, Y.-W.: Long memory in foreign exchange rates. Journal of Business and Economic Statistics 11 (1993), 93-101.
[6] Dehling, H., Mikosch, T., Sørensen, M.: Empirical Process Techniques for Dependent Data. Birkhäuser Boston (2002). MR 1958776 | Zbl 1005.00016
[7] Doukhan, P., Oppenheim, G., Taqqu, M. S.: Theory and Applications of Long-Range Dependence. Birkhäuser Boston (2003). MR 1956041 | Zbl 1005.00017
[8] Fox, R., Taqqu, M. S.: Large-sample properties of parameter estimates for strongly dependent Gaussian time series. Ann. Stat. 14 (1986), 517-532. DOI 10.1214/aos/1176349936 | MR 0840512
[9] Giraitis, L., Surgailis, D.: A central limit theorem for quadratic forms in strongly dependent linear variables and its applications to asymptotical normality of Whittle's estimate. Prob. Theory Relat. Fields 86 (1990), 87-104. DOI 10.1007/BF01207515 | MR 1061950
[10] Guo, H., Koul, H. L.: Nonparametric regression with heteroscedastic long memory errors. J. Stat. Plann. Inference 137 (2007), 379-404. DOI 10.1016/j.jspi.2006.01.016 | MR 2298945 | Zbl 1112.62034
[11] Hannan, E. J.: The asymptotic theory of linear time-series models. J. Appl. Probab. 10 (1973), 130-145. DOI 10.2307/3212501 | MR 0365960 | Zbl 0269.62075
[12] Hart, J. D.: Nonparametric Smoothing and Lack-of-Fit Tests. Springer Series in Statistics. Springer New York (1997). MR 1461272
[13] Hidalgo, J., Robinson, P. M.: Adapting to unknown disturbance autocorrelation in regression with long memory. Econometrica 70 (2002), 1545-1581. DOI 10.1111/1468-0262.00341 | MR 1929978 | Zbl 1141.62340
[14] Koul, H. L., Surgailis, D.: Asymptotic normality of the Whittle estimator in linear regression models with long memory errors. Stat. Inference Stoch. Process. 3 (2000), 129-147. DOI 10.1023/A:1009999607588 | MR 1819291 | Zbl 0968.62050
[15] Lo, A. W.: Long term memory in stock market prices. Econometrica 59 (1991), 1279-1313. DOI 10.2307/2938368 | Zbl 0781.90023
[16] Rao, C. R.: Linear Statistical Inference and Its Applications. Wiley New York (1965). MR 0221616 | Zbl 0137.36203
Partner of
EuDML logo