Article
Keywords:
IP loop; octonions; quantum group; quasiHopf algebra; monoidal category; finite group; coset
Summary:
We recall the notion of Hopf quasigroups introduced previously by the authors. We construct a bicrossproduct Hopf quasigroup $kM {\triangleright\blacktriangleleft} k(G)$ from every group $X$ with a finite subgroup $G\subset X$ and IP quasigroup transversal $M\subset X$ subject to certain conditions. We identify the octonions quasigroup $G_{\mathbb O}$ as transversal in an order 128 group $X$ with subgroup $\mathbb Z_2^3$ and hence obtain a Hopf quasigroup $kG_{\mathbb O}{{>\blacktriangleleft}} k(\mathbb Z_2^3)$ as a particular case of our construction.
References:
[3] Drinfeld V.G.:
Quasi-Hopf algebras. Leningrad Math. J. 1 (1990), 1419–1457.
MR 1047964
[4] Klim J., Majid S.:
Hopf quasigroups and the algebraic $7$-sphere. J. Algebra(to appear).
MR 2629701
[5] Majid S.:
Foundations of Quantum Group Theory. Cambridge University Press, Cambridge, 1995.
MR 1381692 |
Zbl 0857.17009
[7] Smith J.D.H.:
Introduction to Quasigroups and their Representations. Taylor & Francis, 2006.
MR 2268350 |
Zbl 1122.20035
[8] Zhu Y.:
Hecke algebras and representation ring of Hopf algebras. AMS/IP Stud. Adv. Math. 20, Amer. Math. Soc., Providence, RI, 2001, pp. 219–227.
MR 1830177 |
Zbl 1064.20011