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Bicrossproduct Hopf quasigroups

Jennifer Klim, Shahn Majid

Abstract. We recall the notion of Hopf quasigroups introduced previously by
the authors. We construct a bicrossproduct Hopf quasigroup kM⊲◭k(G) from
every group X with a finite subgroup G ⊂ X and IP quasigroup transversal
M ⊂ X subject to certain conditions. We identify the octonions quasigroup GO

as transversal in an order 128 group X with subgroup Z3

2
and hence obtain a

Hopf quasigroup kGO>◭k(Z3

2
) as a particular case of our construction.

Keywords: IP loop, octonions, quantum group, quasiHopf algebra, monoidal ca-
tegory, finite group, coset

Classification: 81R50, 16W50, 16S36

1. Introduction

In [4] we defined the notion of a Hopf quasigroup as a not necessarily associative
algebra with a coassociative coproduct together with an antipode S satisfying
certain linearised IP quasigroup identities. In this paper we find a further class of
noncommutative and noncocommutative examples by means of a bicrossproduct
construction. Such a construction was successfully used to construct the first
Hopf algebras associated to group factorisations and we do the same now for a
factorisation of a groupX into a finite subgroupG and a transversalM containing
the identity. Among the conditions we find for the antipode is that the product
on M defined by the product of coset representatives modulo G makes M an IP
quasigroup. We give necessary and sufficient conditions within our construction.
Throughout the paper unless qualified otherwise a quasigroup will mean with
two-sided inverse property (also called an IP loop).

An outline of the paper is as follows: in Section 2 we recall the definition of a
Hopf quasigroup and briefly mention without proof some of the results in [4]. In
Section 3, we begin with the matched pair approach to subgroups and transver-
sals [2]. It is a standard result in quasigroup theory that if X is a group, G ⊂ X
a subgroup and M a set of left coset representatives (a transversal) then M ac-
quires a left quasigroup structure, and variously more structure as M is variously
restricted [7]. In the matched pair approach this data is developed in terms of
a right action ⊳ of G on M and a map ⊲ : M × G → G which is some kind of
left ‘quasi’ action, a ‘cocycle’ τ : M ×M → G and an induced (generally nonas-
sociative) product · on M . We extend [2] to an analysis of when M is an IP
quasigroup.
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We are then in position in Section 4 to apply a process of semidualization in
which one factor is dualised to obtain a bicrossproduct kM⊲◭ k(G) as a semidi-
rect product by ⊲ and semidirect coproduct by ⊳. We show that this is a Hopf
quasigroup iff M is a quasigroup and certain identities hold for τ . Dualising the
other factor gives a Hopf coquasigroup k(M) ◮⊳kG. We require G respectively
M to be finite. We also provide an example where X = Z3

2 ⋉Cl3 is an order 128
non-Abelian group, G = Z3

2, and M = GO, the octonion quasigroup. Here ⊲ is
trivial, and we obtain a Hopf quasigroup kGO>◭k(G). Unless stated otherwise,
we work over a general field k.

2. Hopf quasigroups

We recall that an (inverse property) quasigroup is a set M with a product,
denoted for the moment by omission, an identity e and for each s ∈M an element
s−1 ∈M such that

s−1(st) = t, (ts)s−1 = t, ∀ t ∈M.

A quasigroup is Moufang if s(t(sr)) = ((st)s)r for all s, t, r ∈M .
In [4] we linearised these notions to Hopf quasigroup and Moufang Hopf quasi-

group in the same way that a Hopf algebra linearises the notion of a group.

Definition 2.1 ([4]). A Hopf quasigroup is a possibly-nonassociative but unital
algebra H equipped with algebra homomorphisms ∆ : H → H ⊗H , ǫ : H → k
forming a coassociative coalgebra and a map S : H → H such that

m(id ⊗m)(S ⊗ id ⊗ id)(∆ ⊗ id) = ǫ⊗ id = m(id ⊗m)(id ⊗ S ⊗ id)(∆ ⊗ id)

m(m⊗ id)(id ⊗ S ⊗ id)(id ⊗ ∆) = id ⊗ ǫ = m(m⊗ id)(id ⊗ id ⊗ S)(id ⊗ ∆).

One can write these more explicitly as

∑

Sh(1)(h(2)g) =
∑

h(1)(Sh(2)g) =
∑

(gSh(1))h(2) =
∑

(gh(1))Sh(2) = ǫ(h)g

for all h, g ∈ H , where we write ∆h =
∑

h(1) ⊗ h(2). In this notation the Hopf
quasigroup H is called Moufang if

∑

h(1)(g(h(2)f)) =
∑

((h(1)g)h(2))f ∀h, g, f ∈ H.

The conditions in Definition 2.1 are stronger than the usual Hopf algebra an-
tipode axioms and compensate for H nonassociative. The paper [4] provides the
first results establishing a viable Hopf-like theory. For example, S is antimulti-
plicative and anticomultiplicative in the sense

S(hg) = (Sg)(Sh), ∆(S(h)) = S(h(2)) ⊗ S(h(1))

for all h, g ∈ H . Clearly an actual (inverse property) quasigroup M linearizes to
a Hopf quasigroup algebra kM with grouplike coproduct on elements of M and
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linear extension of the product and inverse, and is Moufang if M is. As with Hopf
algebras, the theory unifies group and enveloping algebras:

Proposition 2.2 ([4]). For (L, [ , ]) a Malt’sev algebra over k not of characteristic

2, 3, the enveloping algebra U(L) in [6] is a Moufang Hopf quasigroup.

Also as in Hopf algebra theory, we have a dual notion, which we called a Hopf

coquasigroup by reversing the arrows on each of the maps.

Proposition 2.3 ([4]). The algebraic variety k[S7] is a Moufang Hopf coquasi-

group.

We used S7 ⊂ O and the cochain twist approach to the octonions of [1]. In
this context there is a natural action of Z3

2 on k[S7], which leads [4] to a cross
product k[S7] ⋊ Zn

2 as a first example of a noncommutative noncocommutative
Hopf coquasigroup. The dual k(GO) ⋊ Z3

2 of the bicrossproduct Hopf quasigroup
now obtained in Section 4 could be viewed as a quotient of this corresponding to
the inclusion GO ⊂ S7.

3. Matched pair approach to coset quasigroups

Let X be a group and G ⊂ X be a subgroup. A transversal M ⊂ X means
a set of left coset representatives of G, i.e. such that for every x ∈ X there
exists a unique s ∈ M such that x ∈ Gs. We follow the approach to this data
in [2] since this is closest to the more familiar ‘matched pair of actions’ in the
group factorisation case leading to ordinary Hopf algebra bicrossproducts [5]. We
assume throughout that e ∈M , where e is the identity of X . Let s, t ∈M , u ∈ G
and define a cocycle τ : M ×M → G and a product · on M by

(1) st = τ(s, t)(s · t), su = (s⊲u)(s⊳u)

for some kind of actions ⊲ of M on G, and ⊳ of G on M . Most of the following
identities are obtained from the associativity of X on various combinations of
elements using the unique factorisation.

Proposition 3.1 ([2]). The following identities between (M, ·) and ⊲, ⊳, τ hold

for all s, t, r ∈M and u, v ∈ G:

τ(s, t)τ(s · t, r) = (s⊲τ(t, r))τ(s⊳τ(t, r), t · r)(2)

s⊳(uv) = (s⊳u)⊳v(3)

(s · t)⊳u = (s⊳(t⊲u)) · (t⊳u)(4)

(s · t) · r = (s⊳τ(t, r)) · (t · r)(5)

τ(s, t)((s · t)⊲u) = (s⊲(t⊲u))τ(s⊳(t⊲u), t⊳u)(6)

s⊲(uv) = (s⊲u)((s⊳u)⊲v)(7)

s⊲e = e, s⊳e = s, τ(s, e) = e = τ(e, s), s · e = s = e · s.(8)
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Let s ∈M . If s−1 in X lies in M then

e = s−1s = τ(s−1, s)s−1 · s

e = ss−1 = τ(s, s−1)s · s−1

and we find τ(s−1, s) = e = τ(s, s−1) and s−1 · s = e = s · s−1. More generally,
we have:

Lemma 3.2. Let s ∈ M . There is a unique s−L ∈ M such that s−1 =
τ−1(s−L, s)s−L. We have

s−L · s = e(9)

(s⊳τ−1(s−L, s)) · s−L = e(10)

s⊲τ−1(s−L, s) = τ−1(s⊳τ−1(s−L, s), s−L).(11)

Proof: We let s−1 = χ(s)s− where χ(s) ∈ G, s− ∈M . Then

e = s−1s = χ(s)s−s = χ(s)τ−1(s−, s)s− · s.

So we find χ(s) = τ−1(s−, s) and s− · s = e. Since s− is a left inverse of s in M ,
we shall label it s−L. Now, using (1) we have

e = ss−1 = sτ−1(s−L, s)s−L = (s⊲τ−1(s−L, s))(s⊳τ−1(s−L, s))s−L

= (s⊲τ−1(s−L, s))τ(s⊳τ−1(s−L, s), s−L)(s⊳τ−1(s−L, s)) · s−L

which implies s⊲τ−1(s−L, s) = τ−1(s⊳τ−1(s−L, s), s−L) and (s⊳τ−1(s−L, s)) ·
s−L = e. �

It is a familiar fact [7] that the transversal M under our assumptions has the
structure of a right quasigroup (with identity in our case, i.e. a right loop). This
means the existence of a ‘division’ map / : M ×M →M such that (t · s)/s = t =
(t/s) · s for all s, t ∈ M and means in particular that we have right cancellation:
t · s = t′ · s ⇒ t = t′. This is the content of Lemma 3.2 in terms of the matched
pair data ⊲, ⊳, τ :

Proposition 3.3. M in the setting of Proposition 3.1 is a right quasigroup (with

identity). The division map is

t/s = t⊳τ−1(s−L, s) · s−L.

Moreover,

(s−L)−L = s⊳τ−1(s−L, s).
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Proof: (t/s) · s = ((t⊳τ−1(s−L, s)) · s−L) · s = t · (s−L · s) = t by (5) and (9). On
the other side

(t · s)/s = ((t · s)⊳τ−1(s−L, s)) · s−L

= ((t⊳(s⊲τ−1(s−L, s))) · (s⊳τ−1(s−L, s))) · s−L

= ((t⊳τ−1(s⊳τ−1(s−L, s), s−L)) · (s⊳τ−1(s−L, s))) · s−L

= t · ((s⊳τ−1(s−L, s)) · s−L) = t

using (4), (11), (5) and (10). Once we have right cancellation, we know that s−L

is the unique left inverse for each s ∈ M , hence (10) implies the second part of
the proposition. �

Using (4) and (7) respectively, we also obtain the following useful identities:

(t⊲v)−1 = (t⊳v)⊲v−1,(12)

(t⊳v)−L = t−L⊳(t⊲v).(13)

Finally, we will know that we have captured all of the input data into Proposi-
tion 3.1 if we can rebuild X from ⊲, ⊳ and τ and the identities there. In the group
factorisation case this is the construction of a double cross product group G ⊲⊳ M
from a matched pair data. Most of this is in [2].

Proposition 3.4. Suppose that G is a group and the maps ⊲, ⊳ and τ satisfy the

identities (2)–(7). Then the set G×M acquires the structure of a group G ⊲⊳ M
by

(u, s)(v, t)=(u(s⊲v)τ(s⊳v, t), (s⊳v)·t), (u, s)−1=(τ−1(s−L, s)(s−L⊲u−1), s−L⊳u−1)

and identity (e, e). This group is isomorphic to X with subgroup (G, e) and

transversal (e,M).

Proof: The required form of the product is easily obtained from (1) and
(u, s)(v, t) = (u, e)(e, s)(v, e)(e, t) after which everything can be verified by di-
rect computation. We only need to verify that we have a right inverse as the rest
was covered in [2]. We compute

(u, s)(τ−1(s−L, s)(s−L⊲u−1), s−L⊳u−1)

= (u(s⊲τ−1(s−L, s)(s−L⊲u−1))τ(s⊳(τ−1(s−L, s)(s−L⊲u−1)), s−L⊳u−1),

(s⊳(τ−1(s−L, s)(s−L⊲u−1))) · (s−L⊳u−1))

= (u(s⊲τ−1(s−L, s))((s⊳τ−1(s−L, s))⊲(s−L⊲u−1))

τ((s⊳τ−1(s−L, s))⊳(s−L⊲u−1), s−L⊳u−1),

((s⊳τ−1(s−L, s))⊳(s−L⊲u−1)) · (s−L⊳u−1))

= (u(s⊲τ−1(s−L, s))τ(s⊳τ−1(s−L, s), s−L)(((s⊳τ−1(s−L, s)) · s−L)⊲u−1),
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((s⊳τ−1(s−L, s)) · s−L)⊳u−1)

= (u(s⊲τ−1(s−L, s))τ(s⊳τ−1(s−L, s), s−L)(e⊲u−1), e⊳u−1)

= (u(s⊲τ−1(s−L, s))τ(s⊳τ−1(s−L, s), s−L)u−1, e) = (e, e).

The second equality uses (3) and (7), the third uses (4) and (6), the fourth uses
(10), and the final equality uses (11) in Lemma 3.2. �

Continuing our analysis, depending on M we may also have a right inverse s−R

of s in M . If so we have the following compatibility relations

s−L⊲τ(s, s−R) = τ(s−L, s)

s−L⊳τ(s, s−R) = s−R

by considering (s−L · s) · s−R = s−L⊳τ(s, s−R) · (s · s−R) and similar. The two
inverses will not generally coincide unless M is a quasigroup.

Proposition 3.5. In the setting of Proposition 3.1, the following are equivalent:

(i) ∀ s ∈M , s⊲G = G,

(ii) ∀ s ∈M there exists a right inverse s−R ∈M ,

(iii) X = MG.

Proof: We will show that (i)⇒(iii)⇒(ii)⇒(i).
Suppose u ∈ G, s ∈ M and that (i) holds. We seek t, v such that us = tv =

(t⊲v)(t⊳v). Hence if we can find v we will have a unique t = s⊳v−1. It remains
to find v solving (s⊳v−1)⊲v = u. By (12) this is equivalent to (s⊲v−1)−1 = u or
s⊲v−1 = u−1. Such v exists under our assumption, hence (iii) holds. We see also
that if s⊲( ) is bijective then the factorisation as MG is unique.

Suppose (iii) holds, then for s ∈M , s−1 = s−ψ(s) for some s− ∈M,ψ(s) ∈ G.

e = ss−1 = ss−ψ(s) = τ(s, s−)(s ·s−)ψ(s) = τ(s, s−)((s ·s−)⊲ψ(s))((s ·s−)⊳ψ(s))

so (s ·s−)⊳ψ(s) = e⇒ s ·s− = e, implying right inverses s−R exist, and (ii) holds.
We also learn that ψ(s) = τ−1(s, s−R). Note that if the factorisation as MG is
unique we can write st = s ◦ tσ(s, t) ∈MG as a left-right reversal of our previous
theory. Then

ss−R = τ(s, s−R)s · s−R = s ◦ s−Rσ(s, s−R)

= ((s ◦ s−R)⊲σ(s, s−R))((s ◦ s−R)⊳σ(s, s−R))

from which we see that e = (s ◦ s−R)⊳σ(s, s−R) and hence s ◦ s−R = e. But as
(M, ◦) has left cancellation, s−R is uniquely determined.

Finally, suppose (ii) holds and let s ∈ M,u ∈ G. If there exists v ∈ G such
that s⊲v = u then

v = (s−L · s)⊲v

= τ−1(s−L, s)(s−L⊲(s⊲v))τ(s−L⊳(s⊲v), s⊳v)
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= τ−1(s−L, s)(s−L⊲u)τ(s−L⊳u, s⊳v)

by (6) and (s⊳v)−L = s−L⊳u by (13), which can be solved by s⊳v = (s−L⊳u)−R.
Accordingly, we take

v = τ−1(s−L, s)(s−L⊲u)τ(s−L⊳u, (s−L⊳u)−R)

as a definition and verify,

s⊲(τ−1(s−L, s)(s−L⊲u)τ(s−L⊳u, (s−L⊳u)−R))

= (s⊲τ−1(s−L, s))(s⊳τ−1(s−L, s))⊲((s−L⊲u)τ(s−L⊳u, (s−L⊳u)−R))

= (s⊲τ−1(s−L, s))((s⊳τ−1(s−L, s))⊲(s−L⊲u))

(((s⊳τ−1(s−L, s))⊳(s−L⊲u))⊲τ(s−L⊳u, (s−L⊳u)−R))

= (s⊲τ−1(s−L, s))τ(s⊳τ−1(s−L, s), s−L)((s⊳τ−1(s−L, s)) · s−L⊲u)

τ−1((s⊳τ−1(s−L, s))⊳(s−L⊲u), s−L⊳u)

(((s⊳τ−1(s−L, s))⊳(s−L⊲u))⊲τ(s−L⊳u, (s−L⊳u)−R))

= (e⊲u)τ−1((s⊳τ−1(s−L, s))⊳(s−L⊲u), s−L⊳u)

(((s⊳τ−1(s−L, s))⊳(s−L⊲u))⊲τ(s−L⊳u, (s−L⊳u)−R))

= uτ(((s⊳τ−1(s−L, s))⊳(s−L⊲u)) · (s−L⊳u), (s−L⊳u)−R)

τ−1(((s⊳τ−1(s−L, s))⊳(s−L⊲u))⊳τ(s−L⊳u, (s−L⊳u)−R),

(s−L⊳u) · (s−L⊳u)−R)

= uτ((s⊳τ−1(s−L, s)) · s−L⊳u, (s−L⊳u)−R)

τ−1(((s⊳τ−1(s−L, s))⊳(s−L⊲u))⊳τ(s−L⊳u, (s−L⊳u)−R), e)

= uτ(e⊳u, (s−L⊳u)−R)

= u

as required. Here the first and second equalities use (7), the third uses (6). The
fourth equality uses (10) and (11), the fifth uses (2), the sixth uses (4), and the
seventh uses (10). We also see that if the right inverse is unique then so is v
because s⊳v and hence v then necessarily have the form used. �

Note that if G is finite then s⊲( ) in condition (i) will be bijective. We have
noted in the proof that this is equivalent to the factorisation in (iii) being unique
and to the right inverse in (ii) being unique.

Proposition 3.6. M in the setting of Proposition 3.1 is a (two-sided inverse

property) quasigroup iff

t = t⊳τ(s−L, s)

s−L = s−L⊳τ(s, t)
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for all s, t ∈M . In this case (s−L)−L = s, i.e. s−L = s−R.

Proof: Suppose M is an inverse property quasigroup. Then for all s, t ∈M ,

t = (t · s−L) · s = (t⊳τ(s−L, s)) · (s−L · s) = (t⊳τ(s−L, s)) · e = t⊳τ(s−L, s).

Similarly, using (5) we have t = s−L · (s · t) = ((s−L⊳τ−1(s, t)) · s) · t and conclude
that s−L⊳τ(s, t) = s−L (and setting t = s−R in this confirms that s−L = s−R as
it must in an IP quasigroup.)

Conversely, suppose t = t⊳τ(s−L, s). Then from Proposition 3.3 we see that
t/s = t · s−L and hence (t · s) · s−L = t. For the other side if we suppose that
s−L = s−L⊳τ(s, t) then s−L · (s · t) = ((s−L⊳τ−1(s, t)) · s) · t = (s−L · s) · t = t
using (5). �

When M is a quasigroup, we shall continue to denote the (left and right)
inverse of s ∈ M by s−L to distinguish it from s−1 ∈ X . We shall need two
further elementary lemmas.

Lemma 3.7. In the setting of Proposition 3.1,

(s⊳u)−L⊲(s⊲u)−1 = u−1

holds for s ∈M , u ∈ G iff u−1τ(s−L, s)u = τ(s−L⊳(s⊲u), s⊳u).

Proof:

(s⊳u)−L⊲(s⊲u)−1 = (s−L⊳(s⊲u))⊲(s⊲u)−1

= (s−L⊲(s⊲u))−1

= τ(s−L⊳(s⊲u), s⊳u)u−1τ−1(s−L, s)

using (13), (12) and (6). So equality of this to u−1 is precisely the stated condition
for τ . From the proof we see that the latter is also equivalent to s−L⊲(s⊲u) =
u. �

Lemma 3.8. In the setting of Proposition 3.1, we have

(s⊳u)−L⊳(s⊲u)−1 = s−L

for all s ∈M and u ∈ G.

Proof: Using (12) and (13),

(s⊳u)−L⊳(s⊲u)−1 = (s−L⊳(s⊲u))⊳(s⊲u)−1 = s−L⊳((s⊲u)(s⊲u)−1) = s−L.

�

In summary, we have dissected the usual coset construction in terms of prop-
erties of the matched pair data ⊲, ⊳, τ . We will now use this data to construct
something different.
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4. Bicrossproduct kM⊲◭ k(G)

With M and G as in Proposition 3.1 and G finite, we consider the bicrossprod-
uct kM⊲◭ k(G). By kM we mean the vector space on M with its product ·
extended linearly and a group-like coproduct on basis elements. By k(G) we
mean the functions on G with usual pointwise multiplication and standard co-
product. From the ‘quasi-action’ ⊲ in our matched pair data we have a right
action on k(G) and make a cross product algebra. From the action ⊳ in our data
we have a left coaction of k(G) on kM and make cross coproduct coalgebra. This
gives kM⊲◭ k(G) with exactly the same formulae as for Hopf algebra bicrossprod-
ucts. Following the conventions of [5] we take basis {s ⊗ δu|s ∈ M,u ∈ G} and
the algebra and coalgebra structure are explicitly

(s⊗ δu)(t⊗ δv) = δu,t⊲v(s · t⊗ δv)

1 =
∑

u

e⊗ δu

∆(s⊗ δu) =
∑

ab=u

(s⊗ δa) ⊗ (s⊳a⊗ δb)

ε(s⊗ δu) = δu,e.

Notice that since ⊳ is an actual group action it induces an actual coaction
of k(G) and ∆ is therefore coassociative as a standard cross coproduct on the
coalgebra of kM . Put it another way, the proof is identical to the proof [5] for
ordinary bicrossproducts; it is not sensitive to M not necessarily being a group.
Likewise when checking the homomorphism property ∆((s ⊗ δu) · (t ⊗ δv)) =
(∆(s⊗δu))·(∆(t⊗δv)) we only ever encounter in each tensor factor one product in
M and one application of ⊳, so we never use any of the identities in Proposition 3.1
involving τ . All the others are identical to those in the matched pair conditions for
ordinary bicrossproducts, so the proof is again line by line identical. Incidentally,
this proof has a nice diagrammatic formulation in terms of subdividing squares
[5]. Hence the only issue is the antipode.

Lemma 4.1. SupposeM in Proposition 3.1 has right inverses and G is finite. The

antipode of the bicrossproduct kM⊲◭ k(G), if it is a Hopf quasigroup, necessarily

takes the form

S(s⊗ δu) = (s⊳u)−L ⊗ δ(s⊲u)−1

for all s ∈M and u ∈ G.

Proof: Consider S(s ⊗ δu) =
∑

t t ⊗ fu,s
t for some functions with fu,s

t ∈ k(G).
Then considering the usual antipode property alone (set g = 1 in the explicit
formulae after Definition 2.1) applied to h = s⊗ δv we have

e⊗ 1δv,e =
∑

(S(s⊗ δv)(1))(s⊗ δv)(2)

=
∑

a

S(s⊗ δa)(s⊳a⊗ δa−1v)
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=
∑

a,t

(t⊗ fs,a
t )(s⊳a⊗ δa−1v)

=
∑

a,t

t · (s⊳a) ⊗ δa−1v f
s,a
t ((s⊳a)⊲(a−1v))

=
∑

a,t

t · (s⊳a) ⊗ δa−1v f
s,a
t ((s⊲a)−1(s⊲v))

using the definitions, and (7) in the last step. We multiply both sides from the
right by (e⊗ δu−1v) which picks out a = u in the sum. Comparing results, we see
that

δv,ee =
∑

t

t · (s⊳u)fs,u
t ((s⊲u)−1(s⊲v)).

By right cancellation in M the basis elements appearing on the right are all
distinct.

We look first at t = (s⊳u)−L which gives e. Writing f = fs,u
t for brevity and

Ls⊲u(f) = f((s⊲u)−1( )), we have

Ls⊲u(f)(s⊲( )) = δe = δe(s⊲( )),

where the last equality is because v = e ⇔ s⊲v = e. To see this, if v = e
then s⊲v = e by (8). Conversely, if s⊲v = e then from Lemma 3.7 we have
v−1 = (s⊳v)−L⊲(s⊲v)−1 = (s⊳v)−L⊲e = e. Returning to our displayed equation,
we see that Ls⊲u(f) = δe on s⊲G. But s⊲G = G by Proposition 3.5 hence
f = δ(s⊲u)−1 .

Looking now at t 6= (s⊳u)−L, each element of M in our sum occurs just once
on the right and not at all on the left. Hence for these f = fs,u

t we have

Ls⊲u(f)(s⊲( )) = 0

and as s⊲G = G we conclude that Ls⊲u(f) = 0 and hence f = 0. �

The following applies to the form of S in Lemma 4.1 which one can also arrive
at from other considerations, for example by requiring that S is basis preserving.
We continue to state it under the given assumption.

Theorem 4.2. Suppose M in Proposition 3.1 has right-inverses and G is finite.

The bicrossproduct kM⊲◭ k(G) is a Hopf quasigroup iff M is a (two sided inverse

property) quasigroup, and

τ(s⊳(t⊲u), t⊳u) = (s⊲(t⊲u))−1τ(s, t)(s⊲(t⊲u))

holds for all s, t ∈M and u ∈ G. In this case S2 = id.

Proof: We suppose that S has the form found in Lemma 4.1. Suppose kM⊲◭
k(G) is a Hopf quasigroup. From one of the Hopf quasigroup identities we know
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that for all s, t ∈M ,

t⊗ δe = S((s⊗ δe)(1))((s⊗ δe)(2)(t⊗ δe))

=
∑

a

S(s⊗ δa)((s⊳a⊗ δa−1)(t⊗ δe))

=
∑

a

((s⊳a)−L ⊗ δ(s⊲a)−1)((s⊳a) · t⊗ δe) δa−1,t⊲e

= (s−L ⊗ δe)(s · t⊗ δe)

= s−L · (s · t) ⊗ δe,

where only a such that a−1 = t⊲e = e, i.e. a = e contributes in the sum. So we
find that for all s, t ∈M , s−L · (s · t) = t. Similarly on the other side, we also have

t⊗ δe = ((t⊗ δe)(s⊗ δe)(1))S((s⊗ δe)(2))

=
∑

a

(t · s) · s−L ⊗ δ(s⊲a) δe,s⊲aδa,s−L⊲(s⊲a)

= (t · s) · s−L ⊗ δe,

where we can replace s⊲a by e in view of one of the delta-functions and then only
a = s−L⊲e, i.e. a = e contributes in the sum. So we see that (t · s) · s−L = t for
all s, t ∈M . Hence M is an (inverse property) quasigroup.

As this is necessary, we will now suppose that M is a quasigroup for the rest
of the proof and show that we have a Hopf quasigroup iff the remaining condition
displayed in the theorem holds. Let us see first that it is necessary. We look at
one of the Hopf quasigroup identities

t⊗ δv = (s⊗ δe)(1)(S((s⊗ δe)(2))(t⊗ δv))

=
∑

a

(s⊗ δa)(S(s⊳a⊗ δa−1)(t⊗ δv))

=
∑

a

(s⊗ δa)((s−L ⊗ δs⊲a)(t⊗ δv))

= s · (s−L · t) ⊗ δv
∑

a

δs⊲a,t⊲vδa,s−L·t⊲v

= s · (s−L · t) ⊗ δvδs⊲((s−L·t)⊲v),t⊲v,

where only a = s−L.t⊲v contributes in the sum. We have already dealt with the
first tensor factors (M is a quasigroup) and we conclude further that s⊲((s−L ·
t)⊲v) = t⊲v for all s, t ∈M and v ∈ G. By changing variables we conclude

(14) (s · t)⊲u = s⊲(t⊲u)

for all s, t ∈M and u ∈ G. Comparing with (6) this is equivalent to the condition
displayed in the theorem. We have written it entirely in terms of τ, ⊲, ⊳ but clearly
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it is also equivalent to

(15) τ(s⊳(t⊲u), t⊳u) = ((s · t)⊲u)−1τ(s, t)((s · t)⊲u)

for all s, t ∈M and u ∈ G.
Now suppose that this condition holds and that M is a quasigroup. From a

special case of (15) we see that the condition in Lemma 3.7 applies for all elements.
It remains to verify all of the Hopf quasigroup identities. Thus,

((t⊗ δv)(s⊗ δu)(1))S((s⊗ δu)(2))

=
∑

a

(t · s⊗ δa) δv,s⊲aS(s⊳a⊗ δa−1u)

=
∑

a

(t · s⊗ δa) δv,s⊲a((s⊳u)−L ⊗ δ((s⊳a)⊲(a−1u))−1)

=
∑

a

(t · s⊗ δa) δv,s⊲a((s⊳u)−L ⊗ δ(s⊲u)−1(s⊲a))

=
∑

a

(t · s) · (s⊳u)−L ⊗ δ(s⊲u)−1vδv,s⊲aδa,(s⊳u)−L⊲((s⊲u)−1v)

=
∑

a

(t · s) · (s⊳u)−L ⊗ δ(s⊲u)−1vδv,s⊲aδa,((s⊳u)−L⊲(s⊲u)−1)((s⊳u)−L⊳(s⊲u)−1)⊲v

=
∑

a

(t · s)(s⊳u)−L ⊗ δ(s⊲u)−1vδv,s⊲aδa,u−1(s−L⊲v)

= (t · s) · (s⊳u)−L ⊗ δ(s⊲u)−1vδv,s⊲(u−1(s−L⊲v)),

where we used the definitions and (7), (12) to arrive at the third equality. We
then compute the remaining algebra product and replace s⊲a by v in some of the
expressions in view of δv,s⊲a to arrive at the 4th equality. Next, we use Lemmas 3.7
and Lemma 3.8 and simplify to arrive at the 6th equality. We now see that only
one value of a contributes in the sum to arrive at the final expression. From the
condition on τ in the theorem, or rather the case of it equivalent to Lemma 3.7,
we see that

v = s⊲(u−1(s−L⊲v)) ⇔ s−L⊲v = u−1(s−L⊲v) ⇔ u = e.

We know here that s−L⊲( ) is bijective by the noted strong form of Proposition 3.5.
Hence we obtain that our original expression

= (t · s) · (s⊳u)−L ⊗ δ(s⊲u)−1vδu,e = (t · s) · s−L ⊗ δvδu,e = t⊗ δvδu,e

as required.
Similarly, doing now the full version,

(s⊗ δu)(1)(S((s⊗ δu)(2))(t⊗ δv))

=
∑

a

(s⊗ δa)(S(s⊳a⊗ δa−1u)(t⊗ δv))
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=
∑

a

(s⊗ δa)(((s⊳u)−L ⊗ δ(s⊲u)−1(s⊲a))(t⊗ δv))

=
∑

a

(s⊗ δa)((s⊳u)−L · t⊗ δv)δ(s⊲u)−1(s⊲a),t⊲v

= s · ((s⊳u)−L · t) ⊗ δv
∑

a

δ(s⊲u)−1(s⊲a),t⊲vδa,(s⊳u)−L·t⊲v

= s · ((s⊳u)−L · t) ⊗ δvδs⊲(((s⊳u)−L·t)⊲v),(s⊲u)(t⊲v)

by similar computations for the antipode and multiplying out the products. Here
only a = (s⊳u)−L.t⊲v contributes in the sum and we rearrange the final delta-
function accordingly. But

(s⊲((s⊳u)−L · t⊲v)) = (s⊲u)(t⊲v)

⇔ (s⊳u)−L · t⊲v = (s−L⊲(s⊲u))((s−L⊳(s⊲u))⊳(t⊲v))

⇔ (s⊳u)−L · t⊲v = u((s⊳u)−L · t⊲v) ⇔ u = e

using bijectivity of s−L⊲( ), the instance of (14) in Lemma 3.7 and (13). Hence
our original expression

= s · ((s⊳u)−L · t) ⊗ δvδu,e = s · (s−L · t) ⊗ δvδu,e = t⊗ δvδu,e

as required.
We similarly compute

S((s⊗ δu)(1))((s⊗ δu)(2)(t⊗ δv))

=
∑

a

S(s⊗ δa)((s⊳a⊗ δa−1u)(t⊗ δv))

=
∑

a

((s⊳a)−L ⊗ δ(s⊲a)−1)((s⊳a) · t⊗ δv) δa−1u,t⊲v

=
∑

a

(s⊳a)−L · ((s⊳a) · t) ⊗ δv δa−1u,t⊲vδ(s⊲a)−1,((s⊳a)·t)⊲v

=
∑

a

t⊗ δv δa−1u,t⊲vδ(s⊲a)−1,((s⊳a)·t)⊲v

= t⊗ δvδ(t⊲v)u,t⊲v = t⊗ δvδu,e,

where in one of the delta-functions (s⊳a)⊲a−1 = (s⊳a) · t⊲v is equivalent on ap-
plying (s⊳a)−L⊲ to both sides and using (14) to a−1 = t⊲v. Hence there is only
one value of a in the sum. Finally,

(t⊗ δv)S((s⊗ δu)(1))(s⊗ δu)(2)

=
∑

a

((t⊗ δv)S(s⊗ δa))(s⊳a⊗ δa−1u)
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=
∑

a

((t⊗ δv)((s⊳a)
−L ⊗ δ(s⊲a)−1))(s⊳a⊗ δa−u)

=
∑

a

(t · (s⊳a)−L ⊗ δ(s⊲a)−1)(s⊳a⊗ δa−1u) δv,(s⊳a)−L⊲(s⊲a)−1

=
∑

a

(t · (s⊳a)−L) · (s⊳a) ⊗ δa−1u δv,(s⊳a)−L⊲(s⊲a)−1δ(s⊲a)−1,(s⊳a)⊲(a−1u)

=
∑

a

t⊗ δa−1u δv,a−1δ(s⊲a)−1,(s⊳a)⊲(a−1u)

= t⊗ δvu δs⊲v−1,(s⊲u)−1(s⊲v−1) = t⊗ δvuδs⊲u,e = t⊗ δvδu,e,

where only a = v−1 contributes and we used again that s⊲( ) is bijective.
For the computation of S2 we use Lemma 3.7, Lemma 3.8 and Proposition 3.6.

�

Remark 4.3. We remark that [2], [8] constructed a monoidal category of M -
graded G-modules from the data in Proposition 3.1 and the existence of right
inverses. In this case, where there is an obvious multiplicative functor to vectors
spaces, one knows by Tannaka-Krein reconstruction that there is a Drinfeld quasi-
Hopf algebra [3] generating this category as its modules. This was given in [8] and
a close inspection shows that it has a bicrossproduct form. In our dual formulation
this category is that of comodules of the bicrossproduct kM⊲◭ k(G) with S as in
Lemma 4.1 and a Drinfeld Hopf 3-cocycle

φ(s⊗ δu ⊗ t⊗ δv ⊗ r ⊗ δw) = δu,τ−1(t,r)δv,eδw,e

φ−1(s⊗ δu ⊗ t⊗ δv ⊗ r ⊗ δw) = δu,τ(t,r)δv,eδw,e

making it into a coquasi-Hopf algebra. Here [5] the algebra product is associative
up to conjugation by φ in a convolution sense

∑

φ(h(1) ⊗ g(1) ⊗ f (1))(h(2)g(2))f (2) =
∑

h(1)(g(1)f (1))φ(h(2) ⊗ g(2) ⊗ f (2))

for all h, g, f and φ is invertible in the same convolution sense. The coquasi-Hopf
structure in our case is easily be verified by direct computation and does not
require the two further conditions in our theorem, i.e. the bicrossproduct being a
Hopf quasigroup is strictly stronger.

Incidentally, this remark means that there is a coquasi-Hopf algebra and mono-
idal category associated to any finite left quasigroup M with right inverses as
every such can be expressed as a coset construction [7]. This is such that, in
view of (5), the algebra kM is associative in the category. It is not clear if our
additional requirements for a Hopf quasigroup can ever be satisfied by the coset
construction, starting now from M an IP quasigroup. One can show that the
following special case cannot.
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Corollary 4.4. We obtain a bicrossproduct Hopf quasigroup in the context of

Theorem 4.2 if M is an (inverse property) quasigroup and

τ(s, t⊳u) = τ(s, t), τ(s⊳(s−L⊲u), t) = u−1τ(s, t)u

for all s, t ∈M and u ∈ G.

Proof: If we suppose the first of these conditions then the requirement on τ
in Theorem 4.2 becomes after change of variables t⊲u to u (possible by M a
quasigroup and the strong form of Proposition 3.5),

τ(s⊳u, t) = (s⊲u)−1τ(s, t)(s⊲u).

This is equivalent to the second condition stated, after a further change of vari-
ables s⊲u to u. �

The first condition in the corollary says that the second argument of τ is
constant on orbits of ⊳. The second condition says that the function in its first
argument essentially intertwines ⊳ with the adjoint action (cf. a crossed module
τ : M → G) except that it is twisted by ⊲. This suggests to further simplify our
search by focusing on the special case where ⊲ is trivial. We denote by [t] the
orbit label or equivalence class of t under the remaining action ⊳. Note that if
⊲ is trivial then the condition on τ in Theorem 4.2 is already included as (6) in
Proposition 3.1, i.e. there is no additional constraint in this case other than M
an IP quasigroup. However, we still have to solve for this data and we will do so
in the special case of the corollary.

Corollary 4.5. Suppose that ⊲ is trivial. Then the data for constructing a

bicrossproduct Hopf quasigroup in the special case of Corollary 4.4 become G
finite and ⊳, τ such that

(i) τ(s, t) = τ(s, [t]) (depends only on [t]),
(ii) u−1τ(s, t)u = τ(s⊳u, t) (covariance condition),
(iii) τ(s, [t])τ(s · t, [r]) = τ(s, [t · r])τ(t, [r]) (2-cocycle condition).

Here we require that G acts on M by an action ⊳ respecting its structure as in

(3)–(4), (8) and that M is an IP quasigroup and quasiassociative in the sense (5).

Proof: The first displayed condition on τ in Corollary 4.4 is (i) and in this case
the second displayed condition in Corollary 4.4 coincides with (6) and with (ii)
when ⊲ is trivial, (7) is empty, while (2) simplifies to (iii) on use of (i). We still
require (3)–(4), (5) and (8) as stated. Clearly s⊲( ) is bijective as it is the identity
so we have right inverses by Proposition 3.5. �

In this case X has a semidirect product form with cross relations su = u(s⊳u)
and relates to the product of M by st = τ(s, t)s · t as before. Its structure can be
recovered given the stated data from

(u, s)(v, t) = (uτ(s, [t])v, [(s⊳v) · t])
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as a special case of Proposition 3.4. Also, if G is Abelian then the first two
conditions say that τ(s, t) = τ([s], [t]) depends for both of its arguments only on
the orbits in M under G.

For an example we let M = GO the octonion quasigroup which we will take in
the binary-vector form of the octonions introduced in [1]. The group here consists
of elements {±e~a}, where ~a ∈ Z3

2 is a 3-tuple with values in {0, 1}, sitting inside

the octonion algebra with product e~a ·e~b = F (~a,~b)e
~a+~b

in terms of component-wise

addition. The signs here are given by [1]

F (~a,~b) =

























1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 −1 −1 1 1 −1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 1 1 −1 −1

























in binary basis order 000, 001, 010, 011, . . . , 111. The quasigroup in this form, like
the octonion algebra, is quasiassociative in the sense [1]

(e~a · e~b) · e~c = φ(~a,~b,~c)e~a · (e~b · e~c), φ(~a,~b,~c) = (−1)|~a,~b,~c|

extended to signs, where we use the determinant of the matrix formed by the
three vectors (in other words φ is -1 if and only if the three vectors are linearly
independent in Z3

2 as a vector space over Z2).

Example 4.6. Let X = Z3
2 ⋉ Cl3 be the order 128 non-Abelian group with

generators ±ei, gi, i = 1, 2, 3 and relations

eiej =

{

−ejei if i 6= j

−1 if i = j
, eigj =

{

gjei if i 6= j

−gjei if i = j
, gigj = gjgi, g2

i = 1

and let G = Z3
2 as generated by {gi}. Then the transversal M ⊂ X labeled by

±e~a and consisting of

e000 = 1, e001 = e3
e010 = e2, e011 = −g1e2e3
e100 = e1, e101 = −g2e1e3
e110 = −g3e1e2, e111 = g1g2g3e1e2e3

extended to signs, acquires the structure of the octonion quasigroup GO. More-
over, the conditions of Theorem 4.2 hold and we have a Hopf quasigroup
kGO>◭k(Z

3
2).

Proof: This is constructed using Corollary 4.5 above. We know as in [4] that GO

has an action ⊳ of the group Z
3
2 given by e~a⊳g

~b = e~a(−1)~a·
~b where g

~b = gb1
1 g

b2
2 g

b3
3 is
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the group written multiplicatively. We used the vector space dot product over Z2.
Explicitly, e~a⊳gi = (−1)aie~a. We know that this action respects the product.
Next, we define

τ(±e~a,±e~b) = g~a×~b ≡ ga2b3−a3b2
1 ga3b1−a1b3

2 ga1b2−a2b1
3

where the vector space cross product in Z3
2 is viewed multiplicatively via g as

shown explicitly. This obeys the 2-cocycle condition (4.5) in Corollary 4.5 due to
linearity over Z2 of the cross product. We also require that the quasigroup obeys

(e~a · e~b) · e~c = ea⊳τ(e~b, e~c) · (e~b · e~c)

which obtains because ~a · (~b × ~c) = |~a,~b,~c|. Similarly when there are ± signs.
Finally, our special conditions for Theorem 4.2 hold because τ does not depend
on the sign of its arguments and the orbit of e~a under ⊳ is {±e~a} (the group G
being abelian, we require that both arguments depend only through the orbits).
Hence we have all the data for a quasigroup double cross product to yield a group
X = G ⋉ GO. It remains to determine what this group is. It contains G = Z3

2

as a subgroup, and cross relations eigj = gjei⊳gj where e1 = e100, e2 = e010
and e3 = e001 are (at this stage) elements of the quasigroup GO. This gives the

cross-relations stated. We also have e~ae~b = τ(e~a, e~b)e~a · e~b = g~a×~bF (~a,~b)e
~a+~b

for
the product in X in terms of that in GO. Thus

e1e2 = g3F (100, 010)e110 = −g3e110 = −e2e1

e1e3 = g2F (100, 001)e101 = −g2e101 = −e3e1

e2e3 = g1F (010, 001)e011 = −g1e011 = −e3e1, e2i = −1

where F (~a,~b) = −F (~b,~a) when ~a,~b,~a + ~b 6= 0 (the altercommutativty of oc-
tonions, see [1]). This gives the relations of X in terms of the {ei} regarded
now as generators of X . These relations and those of Z

3
2 provide for a basis

{±ea1

1 e
a2

2 e
a3

3 g
b1
1 g

b2
2 g

b3
3 } which has order 128, hence these are all the relations. We

also see in these calculations how the products are related to elements of GO and
rearrange them to obtain the image of most of them in X . We similarly compute

e1e2e3 = −g3e110e001 = −g3g1g2F (110, 001)e111 = g1g2g3e111

to obtain the last element e111 of the transversal. �

We find that the group X here is a semidirect product by Z3
2 of the ‘Clifford

group’ Cl3 generated by the ±ei. This is the set of signed monomials of these
generators in the Clifford algebra in three dimensions (generalizing the way in
which the quaternion group is defined from the quaternion algebra) and easily
seen to form a group. The additional information provided by the transversal
provides the quasigroup structure on the left coset space G\X according to our
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results above. For example,

e110e001 = −g3e1e2e3 = −g1g2e111

induces Ge110 · Ge001 = G(−e111) at the level of cosets. In this way one can
verify all the signs in the table of F for the GO product as a useful check of
all of our theory. The additional signs beyond those from the group Cl3 come
from moving all the {gi} to the far left where they are absorbed by G in the
coset. We also obtain, of course, a new Hopf quasigroup. Its dual is a Hopf
coquasigroup k(GO)⋊kZ3

2 with structure similar to that of k[S7]⋊kZ3
2 in [4] and

could be obtained in a similar way as there. However, we have provided now a
bicrossproduct point of view on it. By Remark 4.3 we also have the bicrossproduct
as a coquasi-Hopf algebra and a monoidal category associated to GO in this way.

It remains to find interesting examples of the most general kM⊲◭ k(G) form
with all of ⊲, ⊳, τ nontrivial.
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